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Abstract

Fine-mapping in genome-wide association studies aims to identify 
potentially causal genetic variants among a set of candidate variants that 
are often highly correlated with each other owing to linkage disequilibrium. 
A variety of statistical approaches are used in fine-mapping, almost all 
of which are based on a multiple regression framework to model the 
relationship between genotype and phenotype, while accommodating 
specific assumptions about the distribution of variant effect sizes and 
using different inference algorithms. Owing to their modelling flexibility 
and the ease of making inferential statements, these approaches are 
predominantly Bayesian in nature. Recently, these approaches have been 
improved by refining modelling assumptions, integrating additional 
information, accommodating summary statistics, and developing scalable 
computational algorithms that improve computation efficiency and 
fine-mapping resolution.

Sections

Introduction

General workflow and basic 
statistical outputs

Fine-mapping approaches

Incorporating additional 
information to improve 
fine-mapping

Remaining challenges

Conclusion and future 
perspectives

1Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA. 2Center for Statistical Genetics, University  
of Michigan, Ann Arbor, MI, USA.  e-mail: xzhousph@umich.edu

http://www.nature.com/nrg
https://doi.org/10.1038/s41576-025-00869-4
http://crossmark.crossref.org/dialog/?doi=10.1038/s41576-025-00869-4&domain=pdf
http://orcid.org/0000-0001-5826-1316
http://orcid.org/0000-0002-4331-7599
mailto:xzhousph@umich.edu


Nature Reviews Genetics

Review article

variant being included and the second variant being excluded, lead-
ing to a 50% chance of not identifying the causal variant17,19 (Fig. 1b). 
To account for such cases, other fine-mapping strategies have been 
developed to identify groups of highly correlated variants and pro-
vide probabilistic measures of uncertainty for both the presence of 
causal variants within each group and the likelihood of each variant  
being causal19.

The fine-mapping methods that identify groups of variants and 
ascribe probabilities of causality are predominately based on a Bayesian 
framework, owing to its modelling flexibility and straightforward-
ness in making the necessary inferential statement19,24–27 (Fig. 1c). 
Such Bayesian methods have benefited from recent improvements 
in power and resolution by increasingly integrating data from mul-
tiple sources, including variant functional annotations28,29, multiple 
genetic ancestries11,12 and correlated traits14. Additionally, many of these 
methods are now designed to work with GWAS summary statistics to 
maximize applicability while addressing privacy constraints30.

In this Review, we discuss recent advances in statistical fine- 
mapping, with an emphasis on methods based on a Bayesian frame-
work (Table 1; other frameworks have been reviewed elsewhere7,31,32). 
We begin with a description of the general fine-mapping workflow 
and basic statistical outputs, followed by an overview of the statistical 
modelling framework and how different methods can be understood 
within such framework as making distinct modelling assumptions 
about variant effect sizes and using different algorithms for inference. 
Next, we discuss recent work to improve fine-mapping methods by 
integrating additional information, such as functional annotations, 
multiple traits, multiple genetic ancestries and gene expression stud-
ies. Finally, we conclude by highlighting the key analytical challenges 
that remain unsolved.

General workflow and basic statistical outputs
Data pre-processing and quality control
A typical fine-mapping workflow (Fig. 2) begins with either individual- 
level genotype and phenotype data or GWAS summary statistics as 
input. The analytic process starts by defining genomic loci within a 
specific distance, typically 1 MB, from genetic variants significantly 
associated with the phenotype of interest. Overlapping loci are then 
merged into a final set of loci ready for analysis. For individual-level 
data, the workflow conducts standard quality control on samples and 
variant genotypes2. Additionally, the phenotype of interest is typically 
processed by adjusting for confounding factors (for example, age, 
gender and population stratification) through regression, resulting 
in phenotype residuals that are used in subsequent fine-mapping 
analyses. For GWAS summary statistics, the workflow also includes 
quality control steps, such as excluding SNPs with a low minor allele 
frequency (MAF), strand ambiguity or potential mismatches between 
z-scores (that is, a list of marginal association measures between 
SNPs and the phenotype) and the LD matrix (that is, a table of pair-
wise correlations between SNPs). To address these potential mis-
matches, analytic tools have been developed to detect and remove 
outlier SNPs whose summary statistics may not match the LD refer-
ence owing to inter-cohort heterogeneity or mismatched reference 
data (but challenges remain, as discussed later)30,33,34. Additionally, 
regularization of the LD matrix can be applied to improve the con-
sistency between z-scores and the LD matrix30, and, when necessary, 
reference and alternative alleles are flipped so that the data used 
to compute z-scores and the LD matrix correspond to the same set  
of alleles.

Introduction
Genome-wide association studies (GWAS) have identified thousands of 
genetic variants, primarily single-nucleotide polymorphisms (SNPs), 
associated with various diseases or disease-related complex traits1–4. 
However, many of these associations are likely not causal owing to 
linkage disequilibrium (LD), in which non-causal variants are nonran-
domly associated with causal variants within local genomic regions2,5. 
To distinguish causal variants from a potentially large set of non-causal 
variants, fine-mapping studies, typically beginning with statistical 
fine-mapping analysis, are often conducted6–10 (Box 1). These studies 
have refined sets of potentially causal variants, have enabled analysis 
across multiple ancestries11,12 and traits13,14, have improved the transfer-
ability of polygenic scores across ancestries15, and have provided key 
insights into the genetic architecture11–14 and biological mechanisms 
underlying diseases and complex traits16.

One of the earliest and simplest strategies for fine-mapping 
involves selecting the top genetic variants with the strongest GWAS 
association evidence in the local region. However, owing to high LD, 
stochastic variability and the possible presence of multiple causal 
variants, the top associations in a local region are often non-causal, 
rendering this simple strategy ineffective17–19 (Fig. 1a). Instead, it is 
preferable to jointly model all SNPs in the local region, as has been done 
in other fine-mapping contexts in which each SNP is tested for an asso-
ciation conditional on all other SNPs20, but this approach is ineffective 
owing to the large number of SNPs. Alternatively, a commonly applied 
stepwise conditional analysis approach utilizes a ‘greedy’ search algo-
rithm that first selects the top variant and then iteratively tests for 
additional variants, while adjusting for those already included in the 
model, until no further variant reaches a pre-specified significance 
threshold21. (Notably, such conditional analyses are also commonly 
used to identify secondary association signals22,23.) However, condi-
tional analyses cannot assess the statistical uncertainty of the identi-
fied variants because the strategy is greedy in nature and does not 
consider other possible combinations of variants that could explain 
the association equally well, or even better. For example, when two 
variants are in perfect LD and only one is causal, the order in which 
they are evaluated in the conditional analysis would result in the first 

Box 1 | Statistical versus biological 
causality
 

Statistical fine-mapping aims to identify a minimal set of potential 
causal variants using statistical methods to inform functional 
experimental studies6,10,132,133. The variants identified through 
statistical fine-mapping are considered causal in a statistical 
sense — that is, they are likely to explain the observed association 
signals given the data and model assumptions. Although the 
associations between statistically fine-mapped variants and 
the trait are unlikely to result from reverse causation, they may still 
be influenced by confounding factors that are not fully controlled 
owing to inevitable model misspecification. This notion of statistical 
causality differs from biological causality, which implies a direct 
mechanistic role in trait or disease aetiology and requires validation 
through experimental studies. Statistical fine-mapping methods 
typically produce credible sets with pre-specified confidence 
levels, offering a principled approach to uncertainty quantification 
that balances statistical power with control of false discoveries.
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Statistical outputs
After the quality control steps, each genomic locus is analysed indi-
vidually, typically using a Bayesian fine-mapping approach to generate 
two key statistical outputs for each locus: posterior inclusion probabil-
ity (PIP), which is given to each variant, and the credible set, which 
comprises a group of variants. The PIP of a variant represents the  
posterior probability that the variant is causal given the available data 
and is a useful metric for prioritizing variants. Unlike marginal P values, 
PIP is typically derived through methods that account for LD within 
the locus, providing a measure of evidence for causality across differ-
ent variants in the locus that can be compared across studies24,27. The 
level-ρ credible set, also referred to as the level-ρ confidence set in 
earlier studies, was originally defined as the smallest set of genetic 
variants that contains all causal variants with probability ρ or 
greater7,17,24,35,36. ρ is typically set to a large value, such as 95%, to ensure 
high confidence in including all the causal variants. Fine-mapping 
approaches using this definition report a single credible set as their 
output. However, this definition of the credible set is both less 

informative and less attainable than the one used by recent studies 
enabled by newer methods.

New definition of credible sets
More recent studies define the level-ρ credible set as the smallest set 
of genetic variants that contains at least one causal variant with prob-
ability ρ or greater11,19,29. In contrast to the earlier definition, fine- 
mapping approaches using this definition report as many credible sets 
as the data support, with each credible set representing a minimal set 
of variants that cannot be further disentangled and that contains at 
least one causal variant19. Meanwhile, groups of variants that can be 
disentangled are assigned to a different credible set, providing addi-
tional information for downstream analysis. Importantly, the number 
of credible sets in the new definition directly reflects the number of 
causal variants in the locus, whereas, under the earlier definition, this 
number needs to be inferred as the sum of PIPs of all variants in the 
credible set, which can be less straightforward24. Under the new cred-
ible set definition, the number of causal variants must be pre-specified 
despite being unknown in practice. To ensure that all causal variants 
are captured, this number is typically set larger than the true number, 
which in turn leads to the generation of uninformative credible sets — 
that is, sets composed entirely of non-causal variants. Consequently, 
post hoc filtering is often necessary to discard uninformative credible 
set; a commonly used credible set filter is purity, defined as the mini-
mum absolute correlation between all pairs of variants within a credible 
set19. Another, though less commonly used, filter excludes credible 
sets that do not contain any SNPs with genome-wide significant P values 
from GWAS12. However, the mentioned less commonly implemented 
approach can be overly conservative, as true causal variants may be 
masked in marginal association analyses37. The definitions of PIP and 
credible set are general and have been adapted to accommodate 
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Fig. 1 | Difference in fine-mapping approaches illustrated in a simple 
scenario. The scenario consists of five SNPs (1, 2, 3, 4 and 5) in a local genomic 
region in which two SNPs (3 and 5) are causal, whereas the remaining three 
are non-causal. The non-causal SNP 4 exhibits the strongest marginal P value 
owing to its linkage disequilibrium (LD) with both causal SNPs. a, The top SNP 
approach selects the SNP 4 in the local region with the smallest marginal P value. 
However, this approach is not guaranteed to identify the causal SNP due to 
stochastic variation or the presence of multiple causal SNPs, as seen in this 
scenario. b, The stepwise conditional analysis sequentially selects SNPs into the 
model to form a single set, explaining the phenotype association. However, this 
approach relies on the marginal signals to select initial signals and is sensitive 
to the order of SNPs examined. In this example, it tests SNPs 1 through 5 one by 
one in step 1 and selects SNP 4 into the model, as it has the smallest P value that 
passes a pre-specified threshold. In step 2, the approach tests SNPs 1, 2, 3 and 5, 
one at a time, while conditioning on SNP 4, and selects SNP 5 into the model as it 
has the smallest conditional P value that passes a pre-specified threshold. The 
algorithm converges after step 2, as none of the remaining SNPs have significant 
P values conditioning on SNPs 4 and 5. As a result, this approach selects one 
causal SNP 5 and one non-causal SNP 4, while missing the causal SNP 3. c, Bayesian 
fine-mapping approach imposes a sparsity-inducing prior to identify potentially 
causal SNPs within a likelihood framework. By jointly analysing all SNPs within 
a locus while accounting for LD, it quantifies the causal probability of each 
SNP with posterior inclusion probability (PIP) and reports credible sets (CS), 
each of which contains, with high probability, at least one causal SNP and its 
correlated non-causal SNPs. For methods based on the SuSiE framework, these 
PIPs represent the overall PIPs, calculated by aggregating the effect-specific PIPs 
across all single effects.
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scenarios involving functional annotations, multiple traits, multiple 
genetic ancestries and gene expression studies.

Fine-mapping approaches
Statistical modelling framework
Almost all existing fine-mapping methods build upon a multiple linear 
regression framework that relates the genotypes within the genomic 

locus to a phenotype of interest. To introduce this framework, we 
denote y as the n-vector of phenotypes and denote X  as the correspond-
ing n by p genotype matrix for n subjects in GWAS and p SNPs within 
the locus. Genotypes are typically coded as 0, 1 or 2, or as continu-
ous values ranging from 0 to 2 in the case of imputed genotypes, 
representing the number of alternative alleles for a given individual. 
To facilitate computation and simplify notation, we assume that the 

Table 1 | Bayesian fine-mapping methods with distinct modelling characteristics

Method Prior on effect size Prior on causal 
configurations

Algorithm Functional 
annotation

Multiple 
ancestries

Multiple 
traits

TWAS 
fine-mapping

Summary 
statistics

Year Refs.

pi-MASS Point-normal Bernoulli- 
log-uniform

MCMC No No No No No 2011 41

CAVIAR
CAVIARBF
MsCAVIAR

Point-normal Bernoulli Exhaustive No Yes No No Yes 2014
2015
2021

17,24,36

PAINTOR
fastPAINTOR

Point-normal Bernoulli-logistic Exhaustive/
Importance
sampling

Yes Yes Yes No Yes 2014
2015
2017

13,35,97

FINEMAP Point-normal Bernoulli SSS No No No No Yes 2016 25

JAM g-prior Beta-binomial Exhaustive/
MCMC

No No No No Yes 2016 42

DAP-G Point-normal Bernoulli-logistic DAP Yes No No No Yes 2016
2018

26,47

bfGWAS Point-normal Bernoulli-Beta EM-MCMC Yes No No No Yes 2017 78

SuSiE
SuSiER

Normal Multinomial IBSS No No No No Yes 2020
2022

19,30

PolyFun + SuSiE Normal Multinomial- 
discrete

IBSS Yes No No No Yes 2020 28

XMAP Infinitesimal + MVN Multinomial VEM No Yes No No Yes 2023 57

FiniMOM Non-local prior Beta-binomial MCMC No No No No Yes 2023 45

CARMA Point-normal Truncated 
Poisson-logistic

SSS Yes No No No Yes 2023 29

SparsePro Normal Multinomial- 
softmax

IBSS Yes No No No Yes 2023 50

RSparsePro Infinitesimal + Normal Multinomial IBSS No No No No Yes 2024 118

SuSiE-inf Infinitesimal + Normal Multinomial IBSS No No No No Yes 2024 49

MESuSiE Mixture of MVNs Multinomial IBSS No Yes No No Yes 2024 11

h2-D2 DE-Dirichlet - MCMC No No No No Yes 2024 44

SuShiE MVN Multinomial IBSS No Yes No No Yes 2024 51

MultiSuSiE MVN Multinomial IBSS No Yes No No Yes 2024 52

GWFM Mixture of Normals Bernoulli-probit MCMC Yes No No No Yes 2024 64

SuSiEx Normal Multinomial IBSS No Yes No No Yes 2024 12

SuSiE2 Normal Multinomial- 
discrete

IBSS Yes No No No Yes 2024 53

mvSuSiE Mixture of MVN Multinomial IBSS No No Yes No Yes 2024 14

FOCUS Point-normal Bernoulli Exhaustive No No No Yes Yes 2019 108

MA-FOCUS Point-normal Bernoulli Exhaustive No Yes No Yes Yes 2022 109

cTWAS Normal Multinomial IBSS No No No Yes Yes 2024 54

TGFM Normal Multinomial IBSS No No No Yes Yes 2025 55

DAP, deterministic approximation of posteriors; DE, double exponential; EM-MCMC, expectation-maximization Markov chain Monte Carlo; IBSS, iterative Bayesian stepwise selection; MCMC, 
Markov chain Monte Carlo; MVN, multivariate normal; SSS, shotgun stochastic search; TWAS, transcriptome-wide association studies; VEM, variational expectation-maximization.
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phenotype vector y and each column of the genotype matrix X  are 
centred and standardized to have zero mean and unit standard 
deviation. The multiple linear regression model can then be written 
as follows:

y Xβ ε= + , (1)

in which β is a p-vector of SNP effect sizes on the phenotype, and ε is 
an n-vector of residual errors with each element assumed to indepen-
dently and identically follow a normal distribution N σ(0, )e

2 . σe
2 

represents the residual variance, typically fixed to be the phenotypic 
variance (that is, 1) as SNPs within a locus explain only a negligible pro-
portion of variation in the trait25,30. Importantly, this multiple regres-
sion framework inherently accounts for LD by jointly modelling all 
SNPs together.

The above linear framework is typically applied to both continu-
ous phenotypes (for example, height, blood pressure or cholesterol 
levels) or binary phenotypes (for example, presence or absence of 
a disease). Its application to binary phenotypes is justified, as a lin-
ear model serves as an effective first-order Taylor approximation to 
a generalized linear regression model when SNP effects are small38. How-
ever, alternative models such as a probit model39 or logistic model40, 
which explicitly account for the binary nature of phenotypes, can be 
used to improve statistical power.

Despite its simplicity, this model serves as the foundation for 
almost all existing fine-mapping methods. Within this framework, 
various fine-mapping methods can be viewed as making distinct mod-
elling assumptions for the genetic effect sizes and relying on different 
algorithms for identifying the causal SNPs. These methods are typically 
evaluated using several key strategies (Box 2).

Modelling assumptions for SNP effect sizes
Given that only a small fraction of SNPs in a local region are likely 
causal, additional modelling assumptions, known as prior assump-
tions, are necessary for the effect sizes β to encourage sparsity and 
facilitate the identification of causal SNPs. The most commonly used 
sparse modelling assumption is the spike-and-slab prior, also referred 
to as the point-normal prior, which assumes that the effect size of 
SNP j follows β πN σ π δ~ (0, ) + (1 − )j β

2
0. The ‘slab’ component contains 

π, which represents the probability that the SNP is causal, and N, 
which denotes that its effect size follows a normal distribution a 
priori when causal. Notably, the variance σβ

2 reflects the magnitude 
of causal effect sizes and is typically either pre-specified based on 
prior knowledge24,25,35 or estimated from the data using an empirical 
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Fig. 2 | A general workflow for fine-mapping analysis with summary statistics. 
a, Genome-wide association studies (GWAS) test for associations between 
genetic variants and a phenotype of interest. b, A typical fine-mapping analysis 
takes GWAS summary statistics, including effect size estimates (E.S.) and their 
standard errors (S.E.) from single-variant association analysis, along with an SNP 
correlation matrix estimated from a reference panel. c, Data preprocessing and 
quality control of the input data, in which MAF represents minor allele frequency. 
d, Fine-mapping analysis outputs the posterior inclusion probability (PIP), which 
quantifies the causal probability of each SNP, and credible sets (CS), each of 
which contains, with high probability, at least one causal SNP and its correlated 
non-causal SNPs. e, Visualization of credible set and PIP using a locus zoom plot. 
f, Downstream statistical approaches empirically evaluate the fine-mapping 
results, whereas functional assays examine the function of the detected SNPs 
through experimental approaches such as massively parallel reporter assays and 
base editing. LD, linkage disequilibrium.
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Bayes approach19. Conversely, the ‘spike’ component contains π1 − , 
which is the probability that the SNP is non-causal, and δ0, which 
denotes that its effect size is zero when non-causal. To facilitate infer-
ence in the above model, a p-vector of binary indicators, γ, is intro-
duced. Each element γj

 takes a value of 1 or 0, indicating whether SNP 
j is causal or non-causal, respectively. Under the spike-and-slab prior, 
the causal indicator γj

 follows a Bernoulli distribution, γ π~ Bern( )j
. The 

model defined by equation (1), paired with a spike-and-slab prior on 
SNP effect sizes, is commonly referred to as the Bayesian variable 
selection regression41.

The above model assumes independence in the causal SNP effect 
sizes, as there is no good reason to believe that the correlation structure 
of causal effects follows that of the SNPs owing to LD41. More specifi-
cally, two SNPs are not believed to share a causal status a priori simply 
because they are in high LD. Despite this independent prior assump-
tion, the posterior estimates of effect sizes remain correlated, as the 
likelihood in equation (1) accounts for LD. Certainly, the g-prior (that is, 
a type of prior that induces a priori correlation among SNP effect sizes) 
can be used instead of the normal prior for the causal effects when there 
is strong evidence that the correlation structure of causal effects 
mirrors that of the SNPs42. In this case, the causal SNP effect sizes 
jointly follow X XγN σ(0, ( ) )β γ

T
γ| |

2 −1 , in which γ  denotes the number 

of causal SNPs and γX  is the corresponding genotype matrix for these 
causal SNPs.

The parameter π in the above model represents the proportion of 
causal SNPs — or equivalently, the prior probability that any given SNP 
is causal — and is typically assumed to be a small value a priori to encour-
age sparsity. Some methods fix π to be m p/ , in which m denotes the 
expected number of causal SNPs17,24,25,36,43. For example, CAVIARBF24 
and FINEMAP25 assume m = 1, whereas GUESSFM assumes m = 3 (ref. 43). 
Other methods incorporate an additional prior on π to account for its 
uncertainty. For example, pi-MASS assumes that π follows a uniform 
prior on the log-scale, π Ulog( ) ~ (log( ), log( ))p

m
p

1
 (default m = 300)41, 

whereas JAM assumes that π follows a Beta distribution, π a b~ Beta( , ), 
with weakly informative hyperparameters by setting a = 1 and b = 9 
(ref. 42). Beyond the standard Bernoulli prior on γ, which is derived 
from the spike-and-slab prior on β, CARMA instead models γ directly 
using a truncated Poisson distribution29.

Moving towards efficient algorithms for model fitting
A key parameter of interest in the above model is the posterior prob-
ability of each SNP being causal, denoted as γ DPr( = 1| )j

, in which D 
represents the data. This metric is known as PIP, as previously men-
tioned. The simplest approach for posterior inference in the above 

Box 2 | Evaluation of fine-mapping results
 

Simulation studies, typically designed to closely resemble real 
data, are widely used to evaluate the performance of fine-mapping 
methods. Key evaluation metrics in simulations include power, 
false discovery rate, test statistics calibration and resolution. 
Power measures the probability of correctly identifying a causal 
SNP among the true causal variants, whereas false discovery 
rate quantifies the proportion of non-causal SNPs among those 
identified, often assessed using posterior inclusion probability 
thresholds of 0.5 or 0.9. Calibration of test statistics is evaluated at 
two levels. Calibration of posterior inclusion probability assesses 
whether the posterior probability of a SNP being causal reflects the 
truth, whereas calibration of credible set evaluates whether 
the set contains the intended number of causal variants — for 
example, a 95% credible set should contain all, or at least one, 
causal variant with a probability of at least 95%, depending on 
the credible set definition. Finally, resolution refers to the size of 
credible sets, with higher resolution indicating smaller sets that 
facilitate more precise localization of causal variants. Resolution is 
influenced by factors such as statistical power and the local linkage 
disequilibrium structure.

In real-data applications, evaluating fine-mapping results is 
inherently challenging owing to the absence of ground truth. Several 
empirical evaluation strategies have been proposed, mostly based 
on enrichment analysis. These include assessing the enrichment of 
heritability attributable to the identified variants134,135; the enrichment 
of fine-mapped SNPs in functional categories, such as expression 
quantitative trait loci, missense variants or regulatory elements11,136; 
and concordance with previously reported findings in the literature11. 
These strategies are relatively straightforward to implement and 
provide indirect but informative evidence for the enrichment of true 
causal variants in fine-mapping results.

Finally, functional assays such as massively parallel reporter 
assays (MPRAs)132 and base editing133 have been used to 
experimentally validate fine-mapping results at single-base-pair 
resolution. Through such functional assays, variants identified as 
statistically causal through fine-mapping have, in several cases, 
been validated as likely biologically causal. For example, in a 
study of blood traits, statistical fine-mapping paired with enhancer 
activity data identified 543 candidate cis-regulatory elements 
across 254 loci137. A follow-up MPRA, STING-seq, was used to 
perturb each candidate cis-regulatory element, successfully linking 
134 cis-regulatory elements to target genes in a human erythroid 
progenitor cell line. Direct variant insertion with base editing further 
tested 46 variants, validating their functional effects at single-base-
pair resolution. Importantly, functional assays are typically restricted 
to model systems, such as cell lines or non-human model organisms, 
which serve as proxies for human physiology. Consequently, a variant 
deemed functional in such assays may not necessarily be causal in 
the relevant tissue in vivo, nor may it completely overlap with variants 
identified through statistical fine-mapping that are conducted at 
the population level. For example, a study of psychiatric disorders 
investigated 683 expression-modulation variants identified by MPRA 
in a human neural progenitor cell line138. Of these, 438 were not 
included in the credible set of any of three fine-mapping methods — 
FINEMAP, SuSiE and CAVIAR — whereas 198 were included in the 
credible set of all three. Notably, in regions with relatively simple 
linkage disequilibrium structures (in which statistical fine-mapping 
is most effective) variants identified from statistical fine-mapping 
tend to modulate expression as determined by MPRAs. Together, 
these findings highlight the fact that statistical fine-mapping provides 
informative evidence and can complement functional assays in 
identifying biologically causal variants.
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model is to use Markov chain Monte Carlo (MCMC), which iteratively 
updates each parameter conditional on others to produce a sequence 
of samples that approximate the posterior distribution of γ41,42,44,45. Using 
these samples, the PIP of each SNP can be estimated by calculating the 
proportion of posterior samples in which the variant is included as a 
causal SNP45. However, MCMC must explore 2p causal SNP configura-
tions, making it computationally prohibitive, and it requires a large 
number of posterior samples for accurate approximation. To improve 
effective exploration of the causal SNP configuration space, several 
specific forms of MCMC have been proposed. For example, reversible-
jump MCMC42 proposes new causal configurations by adding, deleting 
or switching one causal SNP from the current causal configuration, 
enabling concentrated exploration of likely causal configurations. 
Similarly, FINEMAP utilizes a shotgun stochastic search algorithm, an 
iterative procedure designed to effectively explore local causal con-
figurations, enabling it to focus on space enriched with important 
causal configurations25.

An alternative approach to MCMC is to exhaustively search 
the model space and directly evaluate the posterior probability of 
each causal configuration using the following formula:

D
D

D
Pr( ) =

Pr( )Pr( )
∑ Pr( )Pr( )

. (2)
c c∈Γc

∣
∣

∣
γ

γ γ
γ γγ

in which the normalizing constant, D∑ Pr( )Pr( )c c∈Γc
∣γ γγ , requires sum-

mation over 2p possible causal configurations, which becomes com-
putationally feasible only if the number of causal SNPs is restricted to 
a small value. For example, both CAVIAR17 and PAINTOR35 set the max-
imum number of causal SNPs to a small value of k (default, k = 2), reduc-

ing the causal configuration space from 2p to 
p
i

∑ ( )i
k
=0 , in which 

p
i

( ) 

denotes the number of ways to select i causal SNPs from a total of p 
SNPs. Once the posterior probability of each causal configuration 
is calculated, PIP of each SNP can be computed by marginalizing 
over  all  other SNPs in the form of γγγ D DPr( = 1 ) = ∑ Pr( )j γ c: =1c j

∣ ∣ .  
Notably, the computation of γ DPr( )∣  can be carried out by expressing 
it in terms of Bayes factors, defined as ∣ ∣γ γ0D DPr( )/Pr( ), in which γ0 
denotes the null configuration with no causal SNPs. In the extreme case 
in which the simplified assumption of a single causal SNP is made (that 
is, k = 1), an approximate Bayes factor (ABF) can be computed directly 
from GWAS summary statistics without requiring an LD matrix46.  
This ABF, when combined with the assumption that each SNP has an 
equal prior probability of being causal, yields a simple form of PIP, 
calculated as ABF / ∑ ABFj j

p
j=1 , as adopted in early Bayesian fine-mapping 

approaches16. Nevertheless, this exhaustive search approach remains 
computationally intensive when the number of causal SNPs k in the 
genomic locus exceeds a small number.

To further improve computational efficiency, DAP-G26,47 applies 
the deterministic approximation of posterior algorithm to first identify 
sets of high-priority SNPs through a Bayesian version of conditional 
analysis48, in which each set is obtained from a conditioning step and 
contains SNPs that are highly correlated with each other. Subsequently, 
DAP-G refines the causal configuration space to be all possible combina-
tions that select at most one SNP from each set of high-priority SNPs. 
By restricting the evaluation space into a smaller set and using it to 
approximate the normalizing constant, DAP-G further improves com-
putational efficiency. Unlike a standard conditional analysis, DAP-G 
includes all SNPs with a conditional PIP greater than a predetermined 
threshold at each step, which avoids the early situation in which only 
one of two highly correlated SNPs is included.

More recently, variational Bayes algorithms have been proposed 
to effectively fit the above model11,12,14,19,49–57. The main idea behind vari-
ational Bayes is to approximate the posterior distribution with a prod-
uct of simpler functions by minimizing the Kullback–Leibler divergence 
from the approximation function to the posterior distribution58. How-
ever, the standard variational Bayes algorithm is ineffective when pos-
terior samples of parameters are highly correlated, as is the case of 
fine-mapping59. To address this issue, the ‘sum of single effects’ model 
(SuSiE) has been proposed, which effectively reformulates the above 
model through re-parameterization to disentangle posterior correla-
tion and re-expresses the genetic effects β as a sum of L single effects, 
such that β= ∑l

L
l l=1β γ , in which lγ  is a p-dimensional binary indicator 

vector with only one element equal to one, and the remaining are zeros 
to represent the lth causal SNP with non-zero effect19. L is often set to be 
a relatively large number (for example, L = 10), as fine-mapping results 
tend to be robust to the over-specification of L, but they can be sensitive 
to under-specification. The resulting non-informative credible set, 
owing to the over-specification of L, consists entirely of non-causal 
variants and can be subsequently removed based on purity. The binary 
indicator vector γl is assumed to follow a multinomial distribution, 
γ π~ Multi(1, )l , in which π  is a p-vector of prior probability for each SNP 
being causal. In SuSiE, π  is pre-fixed, with the default setting assigning 
equal probability to all SNPs (that is, π p= 1/j ). The non-zero effect for 
the lth causal SNP, βl, is assumed to follow a normal distribution with a 
mean of zero and an effect-specific variance of σl

2 that can be estimated 
from the data using an empirical Bayes approach19. This reformulation 
in SuSiE, paired with the variational Bayes algorithm, naturally leads to 
a model fitting procedure, referred to as the iterative Bayesian stepwise 
selection algorithm, that somewhat resembles the stepwise conditional 
analysis discussed earlier. Briefly, at each step indexed by l, iterative 
Bayesian stepwise selection aims to identify one causal SNP and its 
associated effect size by fitting a single-effect regression model60. This 
task is achieved by regressing the residuals y X γ β− ∑l l l l′≠ ′ ′ that exclude 
the lth single effect, on the genotype matrix X . Throughout the iterative 
process, selections and estimations are continuously re-evaluated until 
convergence. By assuming that there exists only one causal SNP at each 
step, SuSiE avoids the complexity of exploring various causal configura-
tions and substantially improves computational efficiency. Impor-
tantly, SuSiE is able to quantify the uncertainty about which SNPs to 
select at each step, enabling it to directly provide multiple credible sets, 
each aimed at capturing one causal SNP.

The computational cost of fine-mapping varies widely across 
methods and depends on factors such as sample size (n), the number of 
SNPs in a region (p), and the assumed maximum number of causal SNPs 
(k) or single effects (L). Early methods such as CAVIAR and PAINTOR 
rely on exhaustive search, resulting in polynomial time complexity pro-
portional to pk, though they scale linearly with n. By prioritizing causal 
configurations with high posterior probabilities, FINEMAP and DAP-G 
achieve substantial speedups, improving computation by hundreds to 
thousands of times. SuSiE offers the most scalable approach to date, 
with linear computational complexity in n, p and L. In a simulation 
study with three true causal SNPs, SuSiE was reported to be several 
times faster than DAP-G, dozens of times faster than FINEMAP and 
thousands of times faster than CAVIAR19.

Alternative effect size assumptions and use of GWAS  
summary statistics
The spike-and-slab prior is the most commonly used prior about SNP 
effect sizes, but other priors previously used for polygenic score 
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modelling have been explored for fine-mapping61. For example, both 
SuSiE-inf49 and XMAP57 adopt the Bayesian sparse linear mixed model 
(BSLMM) polygenic assumption62 about genetic architecture, in which 
all SNPs are assumed to have at least a small effect, with a small subset 
exhibiting large effects. Consequently, the goal of fine-mapping shifts 
towards identifying the subset of SNPs with large effects. By modelling 
the additional polygenic effects, SuSiE-inf shows improved accuracy49. 
Additionally, genome-wide fine-mapping follows SBayesRC63 by mod-
elling each causal effect as a mixture of four normal distributions, 
enabling it to flexibly capture the effect size distributions across a large 
number of SNPs encountered in genome-wide fine-mapping analysis64. 
By contrast, finiMOM assumes a non-local prior on the causal effect, 
which differs from a normal distribution in that it has a density value 
of zero at zero45. Finally, h2-D2 makes use of a continuous global-local 
shrinkage prior that models each element of β with a double-exponential 
distribution whose variance follows a Dirichlet prior44,65. Owing to the 
use of a non-sparse prior, h2-D2 uses a different statistic to PIP in order 
to assess the causality of each SNP, defined as the difference in poste-
rior probabilities of having positive and negative SNP effect sizes, 
effectively identifying SNPs whose effect sign can be confidently 
determined from the data.

Although we have described fine-mapping methods using 
individual-level data, most of these methods can directly make use of 
GWAS summary statistics, which facilitates data sharing and computa-
tion while ensuring privacy protection1,2,4. These summary statistics 
typically include marginal z-scores for each SNP and the LD matrix, 
which is often estimated from a reference panel of individuals with 
the same genetic ancestry66. Two primary strategies exist for develop-
ing fine-mapping methods that use summary statistics. One strategy 
involves formulating the model with individual-level data and then 
substituting the sufficient statistics with summary data30. The other 
strategy directly models summary statistics, bypassing individual-level 
data17,35. A notable drawback of using summary statistics arises when 
the LD matrix is estimated from a reference panel — even an in-sample 
panel constructed from randomly selected study samples — as mis-
matches can still occur, potentially compromising the accuracy and 
stability of fine-mapping34.

Incorporating additional information  
to improve fine-mapping
Beyond what is available in a single GWAS dataset, extensive efforts 
have been made to develop fine-mapping methods that can incorpo-
rate additional sources of information. These include SNP functional 
annotations, multiple traits, data from diverse genetic ancestries and 
gene expression studies (Fig. 3). Not only can the incorporation of such 
information improve the statistical power of fine-mapping methods, 
but it can also provide key insights into the underlying genetic basis 
by advancing our understanding of genetic architecture, pleiotropy 
and gene expression regulation.

SNP functional annotations
A wide range of SNP functional annotations have been collected or con-
structed from multiple key resources such as the ENCODE67 and Road-
map Epigenomics project68. These annotations capture diverse aspects 
of variant function, including coding changes, regulatory activity 
across cell types, evolutionary conservation and pathogenicity. Annota-
tions are provided either as discrete functional groupings, such as mis-
sense, synonymous and intergenic, or as quantitative functional scores, 
such as the ‘CADD score’69 (CADD: combined annotation-dependent 

depletion). Functional annotations can be retrieved using tools such 
as VEP70 and ANNOVAR71 and have been curated into high-level models 
such as the baseline-LD and baseline-LF models72,73. By leveraging these 
annotations, functional annotation-informed fine-mapping seeks to 
further enhance fine-mapping accuracy26,28,29,32,35,47,50,53,64,74–78 (Fig. 3a).

Two general strategies have been proposed to incorporate func-
tional annotations. One strategy directly models the prior causal prob-
ability of each SNP based on its functional annotations. For example, 
PAINTOR, DAP-G and CARMA use a logistic model, bfGWAS78 adopts a 
Beta distribution, GWFM uses a probit model, and SparsePro50 applies a 
softmax function. To estimate the effects of functional annotations on 
causal probability, an expectation-maximization algorithm is commonly 
used, treating the causal configuration of SNPs as latent variables79. The 
other strategy, exemplified by PolyFun, models the prior causal prob-
ability of each SNP as proportional to its per-SNP heritability28,80, which 
is further modelled as a weighted sum of SNP functional annotations81. 
PolyFun follows a two-step procedure to first estimate the annotation 
effects on per-SNP heritability, which is then incorporated into model-
ling per-SNP causal probability. When a broad set of SNP annotations 
from curated resources is available, it is often important to infer their 
relative contributions to fine-mapping, as certain tissues and cell 
types are more relevant to specific traits than others. For example, 
kidney-related annotations are particularly informative in the analysis 
of estimated glomerular filtration rate50. Applying regularization to 
annotation weights, as implemented in methods such as CARMA and 
PolyFun, can help to prevent model overfitting and to enhance the 
identification of relevant annotations.

The above methods were designed to incorporate a broad range of 
functional annotations, whereas SuSiE2 focuses specifically on integrat-
ing gene expression mapping studies into fine-mapping by fitting two 
SuSiE models53. The first model is applied to gene expression mapping 
studies to identify SNPs associated with gene expression82. The PIPs 
from this model are then used as prior causal probabilities in the sec-
ond model to identify causal SNPs for the phenotype of interest. This 
approach effectively assumes that SNPs influencing gene expression 
levels are more likely to be causal to the phenotype, which enhances 
fine-mapping power when such assumption holds.

Multi-trait fine-mapping
Many SNPs exhibit pleiotropic effects, influencing multiple biologically 
relevant complex traits or diseases83,84. Consequently, jointly model-
ling multiple traits through multi-trait fine-mapping approaches can 
enhance fine-mapping power (Fig. 3b). Several methods have been 
developed for this purpose, most of which rely on a multivariate linear 
regression model to account for trait correlations while incorporat-
ing distinct assumptions about SNP effects across traits13,14,85–87. For 
example, fastPAINTOR accounts for genetic correlations among traits 
and assumes that all causal SNPs have non-zero effects on all traits13. 
flashfm further accounts for additional residual correlations owing to 
shared environmental factors and relaxes the SNP effects assumption 
by encouraging, but not enforcing, causal SNPs to be sharing across 
traits86. mvSuSiE explicitly models both genetic and residual corre-
lations across traits, and it models each single effect vector using a 
mixture of multivariate normal distribution to encourage distinct 
causal SNP sharing patterns across traits, thus further enhancing 
fine-mapping power14.

In multi-trait fine-mapping analysis, selecting relevant traits for 
analysis is a key consideration. Ideally, traits that share substantial 
underlying genetic architecture provide the greatest benefit, as they 
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are more likely to share the same causal variants. Several strategies 
have been proposed for trait selection, including those based on 
prior biological or clinical knowledge14,85,86, the presence of pleio-
tropic GWAS signals13, or the significance of genetic correlations88. In 
principle, including more genetically correlated traits can improve 
fine-mapping resolution and enhance the power to detect causal vari-
ants; however, in practice, modelling more traits increases the compu-
tational burden and number of parameters to the model, which could 
reduce power, especially for causal variants that affect only a subset  
of traits.

When focusing on two traits — one being a complex trait of inter-
est and the other a molecular trait such as the expression level of a 
specific gene — the multi-trait fine-mapping becomes closely related to 
colocalization analysis, which aims to evaluate the genetic relationship 

between two traits by assessing whether they share the same causal 
variants at a given locus89. Both analyses rely on similar underlying 
statistical models, with colocalization analysis summarizing results 
using posterior probabilities that both traits are associated with the 
same causal variant, a quantity closely related to PIP in fine-mapping 
settings. For example, eCAVIAR builds upon the CAVAIR framework 
to estimate the probability that a variant is causal for both a GWAS 
trait and gene expression90. SuSiE-coloc directly uses fine-mapping 
results from SuSiE and applies coloc to assess colocalization of each 
pair of credible sets from the two traits91. Additionally, multi-trait fine-
mapping methods such as mvSuSiE extend traditional fine-mapping by 
explicitly modelling genetic correlation across traits, offering insights 
into the extent of shared versus trait-specific genetic effects — a related 
goal of colocalization14.
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Fig. 3 | Incorporating additional information enhances the power of  
fine-mapping. a, Functional annotations, in the form of functional groupings or 
scores, provide valuable information about the causality or effect sizes of SNPs and 
can thus be incorporated as priors to improve fine-mapping. b, Multi-trait fine-
mapping leverages shared genetic architecture across traits and explicitly models 
pleiotropic effects to enhance fine-mapping. c, Multi-ancestry fine-mapping 
uses the shared or ancestry-specific genetic architectures while accounting for 
distinct linkage disequilibrium (LD) patterns, thereby improving the resolution of 
fine-mapping across ancestries. d, Transcriptome-wide association study (TWAS) 

fine-mapping integrates a gene expression mapping study with genome-wide 
association studies (GWAS) to identify potential causal genes for a trait. The gene 
expression mapping study is used to build expression prediction models in which 
SNPs serve as predictors of gene expression, and the resulting prediction weights 
are used to construct genetically regulated expression (GReX) in GWAS. With rare 
exceptions such as gene-based integrative fine-mapping through conditional 
TWAS (GIFT), TWAS fine-mapping typically uses the same modelling framework as 
GWAS fine-mapping, substituting SNP genotypes with GReX as exposure variables. 
CADD, combined annotation-dependent depletion.
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Multi-ancestry fine-mapping
The increasing availability of GWAS data obtained in consortium 
studies across multiple genetic ancestries, such as All of Us92, Biobank 
Japan93 and UK Biobank94, presents a unique opportunity to enhance 
fine-mapping analysis95. Two naive fine-mapping approaches were 
used early on to leverage GWAS data from multiple ancestries: the first 
meta-analyses GWAS summary statistics across ancestries before 
fine-mapping, and the second fine-maps each ancestry separately and 
then post-processes the results to identify shared or ancestry-specific 
causal variants11,12. However, these naive strategies fail to fully take 
advantage of the shared and ancestry-specific components of the 
genetic architecture and do not account for differences in power across 
ancestries owing to varying sample sizes. As a result, they can lead 
to miscalibration of test statistics and reduced fine-mapping power.

Multi-ancestry fine-mapping approaches have been recently 
developed to explicitly leverage the shared genetic architecture96 while 
accounting for differences in LD patterns across ancestries11,12,36,51,52,57,97–99  
(Fig. 3c). Most of these methods are built on the SuSiE framework and 
differ mainly in their modelling assumptions about the causal SNP 
effect sizes across ancestries. Specifically, SuSiEx assumes that all 
causal SNPs are shared across ancestries and that their effect sizes are 
uncorrelated across ancestries a priori12. By contrast, MultiSuSiE52 and 
SuShiE51 relax this assumption: although both methods still assume that 
the causal SNPs are shared across ancestries, they allow for the effect 
sizes to be correlated across ancestries by using a multivariate normal 
distribution. Despite their similar modelling assumptions, MultiSuSiE 
was primarily applied to fine-mapping causal variants in GWAS 
whereas SuShiE was primarily applied to fine-mapping cis-molecular 
quantitative trait loci in functional genomics studies100–102. Finally, 
MESuSiE introduces more flexible modelling assumptions by allow-
ing some causal SNPs to be shared across ancestries and others to be 
ancestry-specific11. This feature is achieved by introducing a binary 
indicator vector for each causal SNP, in which each element represents 
whether the SNP is causal in a particular ancestry or shared across 
ancestries, and further modelling their effect size correlation across 
ancestries with a multivariate normal distribution. Not only does such 
flexibility in modelling by MESuSiE enhance fine-mapping resolution 
across ancestries, but it also facilitates the characterization of both 
shared and ancestry-specific genetic architectures96,103.

TWAS fine-mapping
Several techniques originally designed for fine-mapping causal vari-
ants in GWAS have been recently adapted to fine-map causal genes 
through transcriptome-wide association studies (TWAS)104–106. TWAS 
integrates GWAS with gene expression studies to identify genes 
whose genetically regulated expression (GReX) is associated with a 
trait of interest, revealing regulatory mechanisms underlying com-
plex traits and diseases. A typical TWAS involves two analytic stages. 
In the first stage, TWAS builds expression prediction models in the 
expression study in which SNPs are used to predict gene expression. 
In the second stage, TWAS uses the estimated SNP prediction weights 
to construct GReX in the GWAS and tests the association of GReX  
with the trait.

Given that genes within the same genomic locus may have cor-
related expression values or contain expression quantitative trait loci 
that are in LD with each other, many genes identified in TWAS may 
represent tagging genes rather than causal ones107. To narrow down the 
list of potential causal genes, several TWAS fine-mapping approaches 
have been proposed20,54,55,108,109 (Fig. 3d). Most of these methods adopt 

techniques originally designed for fine-mapping causal variants in 
GWAS, effectively replacing SNPs with GReX for genes located within 
the genomic locus. For example, FOCUS adapts Bayesian variable selec-
tion regression with an exhaustive search algorithm to fine-map TWAS 
associations108. cTWAS extends SuSiE towards TWAS fine-mapping 
while controlling for SNP horizontal pleiotropic effects54. In contrast 
to these approaches that directly adapt GWAS fine-mapping for TWAS 
fine-mapping, GIFT (gene-based integrative fine-mapping through 
conditional TWAS) takes a frequentist approach20 by recognizing 
that the number of genes per region is often much smaller than the 
number of SNPs, and therefore the complex apparatus developed for 
GWAS fine-mapping may not be necessary for TWAS fine-mapping. 
Specifically, GIFT conducts conditional analysis within the local region, 
focusing on testing one gene at a time while conditioning on all other 
genes in the region. Although the above methods focus on integrat-
ing gene expression data from a single tissue, another tool, TGFM, 
further presents cross-tissue TWAS fine-mapping by leveraging gene 
expression data from multiple tissues55. By constructing GReX across 
multiple tissues, TGFM jointly fine-maps causal gene–tissue pairs 
and non-mediated genetic variants, facilitating the identification of 
both causal genes and their tissues of action. Importantly, the power 
of TWAS fine-mapping methods is often constrained by the limited 
sample size of gene expression study — a limitation that is expected to 
diminish as larger expression quantitative trait loci mapping studies 
become available over time.

Remaining challenges
With the goal of improving the power, resolution and scalability of 
statistical fine-mapping, several challenges lie ahead. Central to these 
challenges is model misspecification, which arises when the model 
used to fit the data deviates from the true data-generating process that 
is inherently unknown in real-data applications. Model misspecifica-
tion in fine-mapping can stem from multiple sources. First, all cur-
rent fine-mapping methods assume a linear additive genetic model 
to describe the relationship between genotype and trait. Although 
both theoretical exploration and empirical evidence suggest that addi-
tive effects account for the majority of genetic variation in complex 
traits110,111, non-additive and nonlinear effects — such as dominance, 
epistasis, gene–environment interactions and haplotypic effects 
(especially those not well tagged by a linear combination of SNPs) — 
may also contribute to trait variation and influence the identification 
of causal variants for particular traits or at specific loci112,113. Second, 
existing fine-mapping methods typically account for population strati-
fication using genetic principal components114 or additional random 
effects terms115. These approaches are often effective in the presence 
of discrete ancestries or subtle structures, but they may fail to fully 
control for complex population structures, particularly in admixed 
populations, leading to residual confounding that affects both the accu-
racy and the causal interpretation of fine-mapping results116. In addi-
tion to these modelling issues, further sources of misspecification are 
addressed in detail below.

Miscalibration of fine-mapping with summary statistics
Many fine-mapping methods directly use summary statistics, which 
rely on two implicit but critical assumptions: first, that the marginal 
z-scores across SNPs are correctly calculated, and, second, that the 
SNP LD matrix inferred from the reference panel matches the data 
from which the z-scores were derived. However, both assumptions 
may fail in real-world applications. Specifically, the marginal z-scores 
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are often obtained from GWAS meta-analysis in consortium studies, 
in which inter-cohort heterogeneity, if not well adjusted for, can lead 
to miscalculation of the marginal z-scores or mismatch between the 
z-scores and the LD matrix, resulting in false positives and miscalibra-
tion in the subsequent fine-mapping analysis34 (Fig. 4a). Some of this 
inter-cohort heterogeneity is biological, including population-specific 
effects from SNPs, gene–gene interactions and gene–environment 
interactions. Other sources of heterogeneity are technical, including 
variations in phenotyping criteria or measurement protocols, genotyp-
ing arrays, imputation panels, quality control criteria and analytical 
software, all of which can contribute to increased miscalibration of 
PIP or credible set in fine-mapping. Additionally, small sample sizes in 
the reference data can introduce variability in the estimated LD matrix, 
and mismatches in ancestry between the reference and the study data 
may also lead to bias in the LD matrix, resulting in its mismatch with  
z-scores30,117.

Several methods have been developed to detect outlier SNPs 
whose summary statistics may not match the LD reference due to 
inter-cohort heterogeneity or mismatched reference data. Specifically, 
DENTIST33 and SuSiER (with the kriging_rss function)30 assume that the 
effect of any single SNP is negligible. Under this assumption, the 
expected marginal z-score of each SNP can be computed based on 
the z-scores of all other SNPs in the locus with LD, which is then com-
pared with the observed z-scores to detect outlier SNPs (Fig. 4b). SuSiER 
further regulates the LD matrix (with the estimate_s_rss function), with 
the regularization parameter estimated from the observed z-scores. 
By contrast, SLALOM assumes that the lead PIP SNP in a locus is the 
only causal variant, enabling it to examine the association statistics of 
neighbouring SNPs for deviations from expected LD-based relation-
ships using a modified DENTIST-S statistic34. The lead PIP variants in 
the flagged suspicious loci are often depleted for likely causal variants, 
highlighting the effectiveness of SLALOM. CARMA integrates a Bayes-
ian procedure into its algorithm for detecting and removing outlier 
SNPs, again by leveraging deviations in association statistics from 
expected LD-based relationships, ensuring that only the LD relation-
ships among the estimated causal SNPs are evaluated. Finally, rather 
than removing outlier SNPs, RSparsePro directly accounts for LD mis-
match in fine-mapping by modelling the observed z-scores ( ̂z) as 

error-contaminated observations of latent z-scores (z), assuming 
N σ~ ( , )s

2z z Î , with the variance parameter σs
2 quantifying the extent of 

discrepancy owing to LD mismatch118. Despite the effectiveness of these 
methods, fine-mapping with summary statistics may still fail in certain 
genomic loci for specific traits, highlighting the need for further 
research to fully understand and address this issue.

Missed causal variants
Several factors during quality control can result in the omission of 
variants in fine-mapping analysis. These factors include the exclusion 
of variants with low MAF or poor imputation quality, as well as the 
loss of variants during data harmonization, as only SNPs shared across 
all studies are retained and analysed11. For example, a variant may be 
missing if it has a low MAF or is poorly imputed in one study or ancestry 
group but not another, leading to its exclusion from the fine-mapping 
analysis. Additionally, owing to the small sample size and population 
difference in the LD reference panel, variants present in GWAS may not 
necessarily exist in the LD reference panel. Although missing non-causal 
variants often has little impact, or may even improve the resolution, 
missing causal variants prevents them from being detected in the 
credible set and leads to PIPs that no longer reflect the true probabil-
ity of causality11. As such, caution is warranted when interpreting the 
fine-mapping results.

Fine-mapping rare variants
The study of rare genetic variants, typically defined by having an 
MAF <1%, is crucial for several reasons. Compared with common vari-
ants, rare variants tend to have larger effect sizes119,120 and are more 
likely to be functionally important121. Recent advances have enabled 
more effective analysis of individual rare variants in larger cohorts. For 
example, one study constructed a within-cohort imputation reference 
panel using whole genome sequencing data from a subset of UK Biobank 
participants, enabling rare variants to be imputed into array-genotyped 
samples with substantially improved accuracy122. Existing fine-mapping 
methods can, in principle, be applied to fine-map rare variants, which 
often exhibit weaker LD that may aid in resolving causal signals. How-
ever, their low allele frequency poses a notable challenge to attaining 
the required statistical power. As a result, fine-mapping outputs such 
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as credible set may still be valuable for capturing and summarizing 
rare variant signals. Additionally, aggregation approaches commonly 
used in marginal rare variant analysis, such as the burden test123 or 

sequence kernel association test124, can potentially be incorporated 
into fine-mapping frameworks to assess the combined effect of vari-
ant sets, albeit at the cost of reduced mapping resolution. Evaluating 

Glossary

Bayes factors
Relative marginal likelihood of the  
observed data under one hypothesis  
compared with another, often 
quantifying the evidence in 
favour of an association versus 
no association.

Bayesian framework
A statistical framework that represents 
uncertainty in model parameters using 
probability distributions; it combines 
prior beliefs with observed data through 
Bayes’ theorem to compute posterior 
distributions.

Bernoulli distribution
A discrete probability distribution 
for binary data that describes the 
probability of an event with only two 
possible outcomes, coded as 1 for 
success and 0 for failure.

Causal configurations
Specific combinations of causal 
statuses across SNPs within a 
genomic locus.

Confounding factors
Variables that influence both the 
outcome and the explanatory variable, 
leading to spurious associations 
between outcome and explanatory 
variable themselves.

Density value
The value of the probability density 
function evaluated at a given point, 
capturing the relative possibility for a 
continuous random variable being near 
that point.

Double-exponential 
distribution
Also known as Laplace distribution, 
it is a continuous probability 
distribution that resembles the 
normal distribution but with a 
sharper peak at the centre and 
heavier tails to encourage sparsity.

Expectation-maximization 
algorithm
An iterative algorithm to find maximum 
likelihood estimates in models 
with latent or missing variables by 
alternating between expectation  
and maximization steps.

Expression quantitative 
trait loci
Genomic loci in which genetic 
variants are associated with gene 
expression levels.

First-order Taylor 
approximation
A linear approximation of a function 
based on its value and first-order 
derivative at a given point.

Generalized linear regression
A generalization of linear regression 
that relates the linear combination 
of explanatory variables to the 
outcome variable through a link function, 
allowing for different types of outcome 
variables (for example, counts, binary).

Global-local shrinkage prior
A type of Bayesian prior that incorporates 
a global parameter to impose overall 
shrinkage of SNP effect sizes towards 
zero, while using local parameters to 
allow SNP-specific adaptive shrinkage 
of individual effect sizes.

Kullback–Leibler divergence
A measure of the difference between 
two probability distributions, often 
used to assess how one distribution 
diverges from another distribution.

Linkage disequilibrium
(LD). The nonrandom association  
of alleles at different loci.

Logistic model
A type of generalized linear regression 
used for binary outcomes in which 
the log-odds of a binary outcome is 
modelled as a linear combination of 
explanatory variables.

Marginal P values
In genome-wide association studies, 
a marginal P value refers to the 
quantification of statistical evidence for 
an association between a single genetic 
variant and the phenotype, without 
accounting for the effects of other 
variants.

Meta-analysis
A statistical analysis that combines 
results from multiple studies to reach 
a single conclusion about a common 
research question.

Minor allele frequency
(MAF). The frequency of the less common 
allele at a genetic locus in a population.

Model space
The set of all possible causal 
configurations within the 
fine-mapping model.

Multiple linear regression
A regression analysis that models a 
continuous outcome variable as a linear 
combination of multiple explanatory 
variables.

Per-SNP heritability
The proportion of phenotypic variance 
explained by a single SNP.

Phenotype residuals
The portion of phenotypic variation  
that remains after accounting for  
the effects of known covariates  
in a statistical model; calculated  
as the difference between observed  
and model-predicted phenotype values.

Pleiotropy
A genetic phenomenon in which 
one gene affects multiple traits 
or diseases.

Poisson distribution
A discrete probability distribution for 
count data that expresses the probability 
of a given number of events occurring in 
a fixed interval of time.

Posterior distribution
The probability distribution 
of a model parameter given 
the observed data and prior 
information.

Posterior probability
The probability of an event given the 
observed data and prior information.

Probit model
A type of generalized linear regression 
used for binary outcomes in which the 
probability of success is modelled using 
the cumulative distribution function of 
the standard normal distribution.

Regression
A statistical analysis that estimates 
the relationship between an outcome 
variable and one or more explanatory 
variables.

Regularization
In the context of covariance matrix 
estimation, regularization refers to the 
technique of adjusting the sample 
covariance matrix, typically by adding a 
multiply of the identity matrix, to ensure 
invertibility and improve numerical 
stability.

Statistical power
The probability that a statistical test 
will correctly detect an effect if it 
truly exists.

Summary statistics
Effect size estimates and their standard 
errors from single-variant association 
analysis in genome-wide association 
studies, along with an SNP–SNP 
correlation matrix typically estimated 
from a reference panel.
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and potentially extending existing fine-mapping methods to better 
accommodate rare variants represent an important direction for 
future research.

High replication failure rate
Model misspecifications can have important consequences in real-data 
applications, contributing to observed high replication failure rate 
(RFR). RFR, defined as the proportion of high-confidence variants 
(PIP > 0.9) fine-mapped in a subsample analysis that fail to replicate 
(PIP < 0.1) in the full sample analysis, has been reported to be inflated 
in fine-mapping of real data49. RFR is an approximate lower bound for 
the false discovery rate, and an inflated RFR likely reflects a miscali-
bration in PIP, in which the proportion of truly causal SNPs is lower 
than that indicated by PIP (Fig. 4a). RFR does not seem to be inflated 
by factors such as missing causal variants owing to quality control, 
deviation of effect size distributions from normality and imputation 
noise, but an important contributor to RFR inflation is the presence of 
non-sparse genetic architecture, in which many SNPs have small effects. 
Consequently, methods building upon the BSLMM assumption, such 
as SuSiE-inf, improve RFR inflation. However, adopting the BSLMM 
assumption does not fully resolve the high RFR issue, suggesting that 
additional sources of model misspecification remain.

Conclusion and future perspectives
In this Review, we have discussed advances and challenges in the 
development of statistical fine-mapping approaches. Our discussion 
is centred around a multiple regression framework, highlighting vari-
ous modelling assumptions and numerical algorithms. Additionally, we 
have examined key challenges in fine-mapping analyses and potential 
solutions that have been proposed. Beyond causal variant identifi-
cation, fine-mapping results also facilitate various other statistical 
analyses, such as colocalization89 and Mendelian randomization125. 
For example, fine-mapping of the trait and gene expression separately 
generates credible sets of candidate causal SNPs for each, which can 
then be used as input for coloc to perform focused colocalization 
analysis91. Similarly, the candidate causal SNPs identified through 
fine-mapping can serve as instrumental variables for Mendelian 
randomization, facilitating the investigation of causal relationships 
between traits126.

Several future directions hold promises for advancing fine- 
mapping methodologies, including expanding to new application 
areas, improving model assumptions and addressing model misspeci-
fication. One such direction is fine-mapping in admixed populations, 
whose genomes consist of a mosaic of segments derived from multiple 
genetic ancestries. Admixed populations provide unique opportunities 
to refine fine-mapping resolution by leveraging differences in LD pat-
terns while mitigating confounding from environmental factors127. As a 
recent method to address this topic, CARMA-X leverages local ancestry 
inference to decompose the genotype matrix of admixed individuals 
into ancestry-specific components and jointly models the genetic 
effects across all ancestral components while properly accounting for 
cross-ancestry LD correlations116. Besides stratifying individuals into 
discrete ancestry groups, developing methods that account for genetic 
ancestry as a continuum represents an important area for further 
exploration128. Additionally, when integrating information from mul-
tiple sources, the type of information that provides the greatest ben-
efit for fine-mapping likely varies across traits and loci. For example, 
multi-ancestry fine-mapping may be particularly powerful when causal 
variants are shared across ancestries but exhibit different patterns of 

LD with neighbouring variants. By contrast, functional annotations 
are especially valuable in regions with complex LD or when causal 
variants have functional effects that can be captured by regulatory or 
epigenomic features. Quantifying the relative contribution of each 
type of information remains an important future direction. Moreover, 
most fine-mapping studies have been carried out for mapping the 
genetic main effects on the trait, implicitly assuming a constant effect 
size across diverse environmental contexts. However, this traditional 
approach overlooks an important aspect of genetic influence — genetic 
effects can be context-dependent and can be modulated by environ-
mental factors129. Indeed, both genetic and environmental factors are 
major contributors to phenotypic variation, and their interactions play 
a pivotal role in shaping complex traits130. Therefore, developing meth-
ods towards fine-mapping gene–environment interactions is an impor-
tant future direction towards uncovering context-specific genetic 
effects and generating deeper insights into the architecture of complex 
traits. Finally, with the rapid advancement of deep learning and genome 
language models131, investigating how these powerful tools can be 
integrated to enhance fine-mapping accuracy and interpretability 
remains a crucial avenue for future research.
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