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Background
Spatially resolved transcriptomic studies perform gene expression profiling on many spa-
tial locations of a tissue to characterize its transcriptomic landscape. Spatial transcrip-
tomics studies are enabled by multiple spatial transcriptomics technologies that have 
emerged in the past few years. These spatial transcriptomic technologies include those 
that are based on single molecular fluorescent in situ hybridization (smFISH) [1–3] such 
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as seqFISH, seqFISH+ [4, 5], and MERFISH [6, 7]; those that are based on microdissec-
tion techniques [8, 9] such as LCM [10] and tomo-seq [11]; and those that are based on 
in situ mRNA capturing followed by high-throughput sequencing techniques [12] such 
as spatial transcriptome (ST) [13], Slide-seq [14, 15], and high-definition spatial tran-
scriptomics (HDST) [16]. Different spatial transcriptomic technologies measure differ-
ent spatial units on the tissue with distinct spatial resolutions. For example, ST measures 
expression on multiple capture sites known as spots, each of which has a diameter of 100 
μm and captures mRNA diffused from a neighborhood of likely 10–40 single cells [13]. 
The 10x Genomics technology has a spatial resolution of 55 μm with each spot assay-
ing 1–10 cells (10x Genomics Space Ranger 1.1.0). Slide-seq has a spatial resolution of 
10 μm with each measured location containing 1–3 cells [14, 15]. The high-definition 
spatial transcriptomics (HDST) has a spatial resolution of 2 μm [16]. Seq-Scope reaches 
sub-micrometer resolution and captures transcripts on locations with 0.5–0.8 μm dis-
tance apart from each other [17]. Laser capture microdissection sequencing (LCM-seq) 
is able to achieve single-cell resolution [10]. The smFISH-based technologies directly 
measure the transcript signals inside single cells via imaging and thus also reach single-
cell resolution [1–3].

Regardless of the technology, the expression measurements obtained in spatial tran-
scriptomics are often in the form of counts: they are collected either as the number of 
barcoded mRNA for any given transcript imaged in a single cell through smFISH-based 
techniques or as the number of sequencing reads mapped to any given gene through 
sequencing-based techniques. Consequently, many statistical methods developed for 
spatial transcriptomics analysis directly model the count data. For example, SPARK 
[18] models count data through an overdispersed Poisson distribution to detect genes 
that display spatial expression patterns. Stereoscope [19] and RCTD [20] models count 
data with negative binomial (NB) and Poisson regression, respectively, to perform cell 
type decomposition. gimVI [21] models count data with either NB or zero-inflated NB 
(ZINB) for missing gene expression imputation. Direct modeling of the count data in 
spatial transcriptomics can effectively account for the mean-variance relationship in the 
raw counts, thus achieving optimal analytic performance.

With the advance of spatial transcriptomics technologies, the count data collected 
from spatial transcriptomics has become increasingly sparse with a prevalence of zero 
values. For example, the recent seqFISH+ technology assays tens of thousands of genes 
through a number of wash-hybridization steps, with each mRNA being labeled by a 
sequence of hybridization signals that are captured by imaging. Due to imaging sensi-
tivity and hybridization efficiency, the number of mRNA molecules measured in each 
cell by seqFISH+ can be low with many zero values. As another example, the sequenc-
ing-based technologies, limited by the total sequencing depth, also yield sparse count 
measurements especially as the number of measured spatial locations becomes increas-
ingly large. With the prevalence of sparse counts and excessive zeros from recent spa-
tial transcriptomics, one naturally wonders what types of count models one should use 
to describe these data and whether the excessive zeros observed in these data reflect 
technical artifacts or actual biological variation. Indeed, in the parallel field of single-
cell RNA sequencing (scRNA-seq) studies, it has long been debated whether one should 
treat the zero values as missing data and use a zero-inflated model for their modeling 
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[22–24] or whether the zeros belong to an integrated component of the count generating 
process and could be fully accounted for by a simple Poisson model or an overdispersed 
Poisson model such as a Poisson mixed model or a negative binomial (NB) model [25–
27]. Examining and understanding the statistical properties of the excessive zero values 
in spatial transcriptomics is important, as it can help determine whether it is impor-
tant to perform imputation for the zero values [28–31] and/or whether it is necessary to 
include a zero inflation component in statistical modeling, thus facilitating the develop-
ment of best practices for various data analytic tasks in the field.

Here, we present a comprehensive analysis on 20 spatial transcriptomics datasets 
collected from 11 distinct technologies to characterize the distributional properties of 
the gene expression count data and understand the statistical property of the zero val-
ues. Specifically, for each data in turn, we carried out cross-gene analysis, gene-specific 
analysis, location-specific analysis and conditional analysis to characterize the goodness 
of fit for a range of count models on the gene expression counts and perform formal 
hypothesis tests to understand the overdispersion and zero inflation patterns of gene 
expression. Our study provides the first comprehensive evidence supporting the use of 
count models without a zero inflation component for modeling spatial transcriptomics, 
dovetailing the recent findings in the single-cell literature that modeling zero inflation is 
not necessary, at least for UMI-based technologies [25–27].

Results
Most spatial transcriptomics data contain an excessive amount of zero values and display 

overdispersion

We investigated the statistical distributional properties of the gene expression count data 
collected from different spatial transcriptomics technologies. To do so, we obtained a 
total of 20 spatial transcriptomics datasets from 11 distinct technologies. These technol-
ogies include MERFISH (n = 1 dataset), seqFISH (n = 1), seqFISH+ (n = 1), STARmap 
(n = 1), paired cell sequencing (n = 1), LCM-seq (n = 1), NICHE-seq (n = 1), Tomo-
seq (n = 1), HDST (n = 1), Slide-seq (n = 1), Slide-seqV2 (n = 1), 10X Visium (n = 7), 
and Spatial Transcriptomics (n = 2). These technologies can be generally categorized 
into two categories: a category of smFISH-based spatial transcriptomics technologies 
that measure gene expression at the single-cell level (i.e. seqFISH, seqFISH+, MERFISH) 
and a category of sequencing-based spatial transcriptomics technologies that measure 
gene expression on tissue locations with various spatial resolutions (i.e. the remaining 
datasets). For each dataset, we obtained the gene expression measurements across tis-
sue locations in the form of a count matrix. For sequencing-based technologies, each 
element of the count matrix represents the number of reads mapped to each gene on 
each spatial location. For smFISH-based technologies, each element of the count matrix 
represents the number of in situ hybridization signals detected for each targeted gene in 
each cell.

The expression count matrix from various technologies, with the only exception of 
seqFISH and MERFISH, are in sparse forms, consisting of an excessive proportion of 
zeros (Additional file  1: Table  S1). Specifically, while the proportion of zero counts in 
MERFISH and seqFISH are only 1.79% and 1.96% respectively, the proportion of zero 
counts in the other datasets ranges from 59.96% (for ST) to 99.96% (for HDST) with a 
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mean of 75.85% (median = 79.34%; Fig. 1A). The proportion of zeros in each dataset is
negatively correlated with the average total count per location in the dataset (Spearman 
correlation = −0.65; p-value = 0.002; Fig. 1B). (The total count per location is equivalent
to the sequencing read depth per location, for sequencing-based spatial transcriptom-
ics.) We further visualized the relationship between the estimated zero proportion and 
the estimated mean expression by plotting the two against each other across all genes 
(Fig 1C and Additional file 7: Fig. S1). We found that the gene-specific zero proportion is 
inversely related to the gene-specific expression mean. The inverse relationship between 
zero proportion and expression mean can be accounted for by a negative binomial (NB) 
distribution across the transcriptome (red line; Fig. 1C, D), and to a lesser extent, by a 
Poisson distribution (blue line; Fig. 1C, D).

Besides zero inflation, the expression count matrix from the majority of the technolo-
gies also displays appreciable overdispersion. Specifically, in each dataset we calculated 
the proportion of genes that have a sample variance greater than the sample mean, as 
these genes display potential overdispersion that is not explained by a Poisson model. 
We found that the proportion of potentially overdispersed genes ranges from 41.98% 
(for HDST) to 100% (for MERFISH and seqFISH) across datasets, with an average 

Fig. 1  Most spatial transcriptomics datasets contain an excessive proportion of zero values. A The majority 
of spatial transcriptomics datasets (x-axis) contain a substantial proportion of zero values (y-axis). B The 
proportion of zero values in each dataset (y-axis; logit-transformed) is negatively correlated with the total 
counts per location (x-axis). Tomo-seq (zero proportion = 0.797; total count per location = 0.198 million) is 
an outlier and is not displayed on the panel. C The proportion of zero values for each gene (y-axis) is plotted 
against the expression mean (x-axis) for three example datasets that include seqFISH+, Slide-seqV2, and 
10x_MB(C). The zero vs mean trend is fitted by either a Poisson model (blue line) or a negative binomial 
model (red line). D Mean square error (MSE) for the estimated zero proportion (y-axis; log transformed) based 
on either the Poisson model (blue line) or the negative binomial (red line) across datasets (x-axis). In both A 
and D, the gray dotted line separates smFISH-based technologies from the sequencing-based technologies 
and solid line separates single-cell resolution technologies to spot-level resolution technologies
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estimate of 75.69% (median = 73.39%; Fig. 2A). For each dataset in turn, we contrasted
the sample variance with the sample mean for every gene by calculating a ratio between 
the two and obtained the median ratio across all genes as a metric to quantify the extent 
of overdispersion in the dataset. We found that the median ratio ranges from 1.00 (for 
HDST) to 10.90 (for Tomo-seq) across datasets, with a median value of 1.17 (average =
2.00; Fig.  2B). We further visualized the relationship between the expression variance 
and mean by plotting the two against each other across genes (Fig. 2C and Additional 
file 7: Fig. S2). We found that the gene-specific variance is positively related to the gene-
specific expression mean, with the relationship captured by a NB distribution (red line; 
Fig. 2C, D) but not a Poisson distribution (blue line; Fig. 2C, D).

Poisson and negative binomial distributions are the preferred count models for most 

genes across most datasets

We carefully examined the expression count distribution for each gene separately. To 
do so, for each gene in turn, we fitted its expression levels across tissue locations using 
four distinct count models. The four models include a Poisson model, a NB model, 
a zero-inflated Poisson (ZIP) model, and a zero-inflated negative binomial (ZINB) 
model. Based on these models, we carried out analyses to evaluate the goodness-of-fit 

Fig. 2  Most spatial transcriptomics datasets display overdispersion. A The proportion of genes with 
variance greater than mean (y-axis) across datasets (x-axis). B The median ratio of variance to mean (y-axis) 
across datasets (x-axis), where the horizontal line y = 1 shows where the variance equals the mean. C The 
log transformed variance for each gene (y-axis) is plotted against the expression mean for datasets from 
three techniques: seqFISH+, Slide-seqV2, and 10x_MB(C). D Mean square error (MSE) for the estimated log 
transformed variance (y-axis) based on either the Poisson model (blue line) or the negative binomial model 
(red line) across datasets (x-axis). In A, B, and D, the gray dotted line separates smFISH-based technologies 
from the sequencing-based technologies and solid line separates single-cell resolution technologies to 
spot-level resolution technologies
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of the four count models on fitting the expression count data for one gene at a time. 
Specifically, we performed model selection for every gene to identify the model that 
best describes the gene expression pattern using the Akaike information criterion 
(AIC). In the analysis, in all datasets except for seqFISH and seqFISH+, we found
that a large proportion of genes (median = 82.23%; range from 66.74% for HDST to
97.14% for MERFISH) prefers either the Poisson model (median = 41.60%) or the NB
model (median = 40.84%; Fig. 3A). The only exceptions are the datasets with smFISH
technology: the proportion of genes preferring the Poisson model is low for both 
seqFISH (0.00%) and MERFISH (2.14%), while the proportion of genes preferring the 
NB distribution is low for seqFISH+ (8.52%) but high in MERFISH (95%). For most
datasets, except for seqFISH and seqFISH+, only a small proportion of genes prefer
the ZIP model (median = 14.37%), and even fewer prefer the ZINB model (median =
1.95%). However, a large proportion of genes prefer ZIP in seqFISH+ (56.84%), while
a large proportion of genes prefer ZINB in seqFISH (56.63%; Fig.  3A). Overall, the 

Fig. 3  Gene-specific analysis, including model selection and likelihood ratio tests, across datasets. A The 
proportion of genes that prefer each of the four count models based on model selection with AIC (y-axis) 
is displayed for each dataset (x-axis). The four models include Poisson (Aquamarine), negative binomial (NB; 
Tangerine), zero-inflated Poisson (ZIP; Polo Blue), and zero-inflated negative binomial (ZINB; pink). The Poisson 
model and the negative binomial model are the preferred models across datasets. B The proportion of 
genes that are significant in each of the four likelihood ratio tests (y-axis) is displayed for each dataset (x-axis). 
The four LRT tests include the test on P vs ZIP (salmon), P vs NB (green), NB vs ZINB (cyan), and ZIP vs ZINB 
(purple)
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results suggest that the Poisson and NB models are preferred for modeling the major-
ity of genes across the majority of datasets.

Modeling overdispersion generally accounts for zero inflation, but not vice versa

We performed gene-specific analysis to characterize the zero inflation and overdisper-
sion patterns for every gene. First, for each data in turn, we performed two sets of likeli-
hood ratio tests (LRT) to formally identify overdispersed genes and zero-inflated genes. 
The two sets of LRT examine whether the gene of focus displays significant zero inflation 
(P vs. ZIP) and/or overdispersion (P vs. NB) on top of the Poisson distribution. In the 
first LRT (P vs. ZIP), we found that an appreciable proportion of genes display zero infla-
tion not accounted for by the Poisson distribution. Such proportion ranges from 2.86% 
(for MERFISH) to 81.93% (for seqFISH), with a mean of 22.91% across datasets (median 
= 14.84%; Fig. 3B and Additional file 2: Table S2). In the second LRT (P vs. NB), we also 
found that an appreciable proportion of genes display overdispersion not accounted for 
by the Poisson distribution. Such proportion ranges from 8.10% (for 10x_HH) to 96.39% 
(for seqFISH), with a mean of 35.51% across datasets (median = 26.27%; Fig.  3B and 
Additional file 2: Table S2). Importantly, the overdispersed genes detected by the second 
LRT have a substantial overlap with the zero-inflated genes detected by the first LRT. 
Specifically, the vast majority of the zero-inflated genes display overdispersion (ranges 
from 71.64% for NICHE-seq to 100% for MERFISH and seqFISH; mean proportion = 
95.43%; median proportion = 98.87%). A substantial proportion of overdispersed genes 
also display zero inflation (ranges from 27.87% for seqFISH to 99.56% for seqFISH+; 
mean proportion = 64.25%; median proportion = 64.58%; not include MERFISH which 
has only four zero-inflated genes) (Fig. 3B and Additional file 2: Table S2).

The relatively high overlap between the overdispersed and zero-inflated genes 
prompted us to investigate formally the relationship between zero inflation and overd-
ispersion. To do so, we carried out two additional LRT to examine whether the observed 
zero inflation can be explained by overdispersion (via a third LRT on NB vs. ZINB) and 
whether the observed overdispersion can be explained by zero inflation (via a fourth 
LRT on ZIP vs. ZINB). The third LRT allows us to examine whether a zero inflation 
component is needed on top of an NB distribution to characterize the excessive zeros 
in spatial transcriptomics, or whether the modeling of overdispersion by NB is sufficient 
to account for zero inflation. In the analysis, we found that, for most spatial transcrip-
tomics technologies, with two exceptions (seqFISH+ and HDST), only a very small pro-
portion of genes would benefit from an additional zero inflation component on top of 
the NB model: the proportion of significant genes in the third LRT ranges from 0.03% 
(for Tomo-seq) to 8.84% (for seqFISH), with a mean of 1.37% (median = 0.51%) across 
datasets. Only the seqFISH+ and HDST data can benefit from explicit modeling of zero 
inflation on top of the NB model: 28.22% and 17.31% genes are significant in the third 
LRT for the two datasets, respectively. The fourth LRT, on the other hand, allows us to 
examine whether an overdispersion component is needed on top of a ZIP distribution 
to characterize the overdispersion in spatial transcriptomics, or whether modeling of 
zero inflation by ZIP is sufficient to account for the overdispersion. In the analysis, we 
found that the proportion of genes would benefit from an additional overdispersion on 
top of the ZIP model ranges widely depending on datasets. For example, while a small 
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proportion of genes in the HDST (0.60%), Slide-seq (1.67%), or Human Heart from 10x 
Visium data (2.64%) could benefit from modeling overdispersion, a substantial propor-
tion of genes in Mouse Brain (Coronal) from 10x Visium (21.13%), STARmap (22.25%), 
and Tomo-seq (58.46%) could benefit from modeling overdispersion. Such proportion 
appears to be dependent on the number of genes preferring NB model based on AIC 
(Spearman correlation = 0.9038, p-value = 1.82e−06). The third and fourth sets of LRTs 
suggest that the observed overdispersion in the majority of the spatial transcriptomics 
datasets is not due to zero inflation, but not vice versa.

Overdispersion and zero inflation are primarily due to expression heterogeneity 

and the spatial distribution of cell types across tissue locations

One potential source that may contribute to the observed overdispersion and/or zero 
inflation is the gene expression heterogeneity across tissue locations. Here, we examined 
the extent to which the observed over dispersion and/or zero inflation can be accounted 
for by such expression heterogeneity across locations. To do so, we first categorize tissue 
locations into distinct location clusters either based on the original study or by perform-
ing clustering analysis (details in “Methods”). For spatial transcriptomics with single-cell 
resolution, such clustering information effectively contains cell type annotation informa-
tion for the measured cells. For spatial transcriptomics with regional resolutions, such 
clustering information may contain tissue structure information for the measured loca-
tions. In either case, clustering on locations allows us to segregate tissue locations into 
location clusters, each containing a set of relatively homogeneous tissue locations or 
cells. With location clustering information, we performed a similar set of analyses as in 
the previous two sections to characterize the distributional properties of the expression 
count data in each location cluster separately. Such cluster-specific analyses allow us to 
effectively control for expression heterogeneity across locations and to focus the analysis 
on a set of locations that are relatively homogeneous.

In the location cluster-specific analysis, we found that a substantial fraction of genes 
prefers the Poisson model over the other models (Fig. 4A). Specifically, apart from the 
seqFISH data, compared to the whole tissue analysis, the fraction of genes preferring the 
Poisson model in the cluster-specific analysis on average increases by 1.07 fold (for ST_
HBC) to 20.90 fold (for STARmap), with a median increase of 1.79 fold across datasets. 
For example, in the human breast cancer dataset from 10x Visium, the proportion of 
genes that prefer the Poisson, NB, ZIP, and ZINB models is 45.84%, 40.65%, 12.81%, and 
0.71%, respectively. In the cluster-specific analysis in the largest cluster, the proportion 
of genes that prefer the Poisson, NB, ZIP, and ZINB models becomes 68.99%, 20.44%, 
10.42%, and 0.01%, respectively. The only dataset that was hard to quantify through fold 
change is seqFISH, where only a small proportion of genes prefer the Poisson model 
before (0%) and after (2.4–3.2%) location clustering.

We further examined the proportion of significant zero-inflated and overdispersed 
genes, as defined by the first LRT (P vs ZIP) and the second LRT (P vs NB), respectively. 
We found that the proportion of genes showing significant zero inflation or overdisper-
sion substantially reduced in the cluster-specific analysis (Fig. 4B). Specifically, the pro-
portion of zero-inflated genes in the cluster-specific analysis is on average only 3.19% 
(for 10x_MB(S-A) dataset) to 42.32% (for Tomo-seq dataset) as compared to the whole 
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tissue analysis, with a median of 7.58%. Similarly, except for the ST_HBC data, the pro-
portion of overdispersed genes in the cluster-specific analysis is on average only 3.47% 
(for seqFISH+ dataset) to 70.83% (for seqFISH dataset) as compared to the whole tissue 
analysis, with a median of 10.90%. For ST_HBC data, the proportion of overdispersed 
genes in the cluster-specific analysis increased to an average of 224% as compared to that 
of the whole tissue analysis. In addition, the significant genes from the other two LRTs 
are also substantially reduced in the cluster-specific analysis (Fig. 4B). The results sug-
gest that a large fraction of genes in the majority of datasets are no longer zero-inflated 
or overdispersed after accounting for expression heterogeneity across location clusters.

Fig. 4  Location cluster-specific analysis reveals shifted count model preference and substantially reduced 
significant genes in likelihood ratio tests across datasets. A A ratio is computed in each cluster-specific 
analysis in each dataset to contrast the proportion of genes that prefer each of the four count models based 
on AIC after clustering to that before clustering. The median ratio across location clusters (y-axis; log-scale) 
is plotted for each dataset (x-axis). The four count models include Poisson (green), negative binomial (NB; 
salmon), zero-inflated Poisson (ZIP; cyan), and zero-inflated negative binomial (ZINB; purple). The gray 
horizontal line denotes a ratio value of one. The median ratio for the Poisson model is above one while the 
median ratio for the other models is below one in almost all datasets. A few data points are not displayed: 
the seqFISH data contains no gene preferring the ZIP model before clustering and after clustering; and 
the MERFISH data contains no gene preferring the ZIP model before clustering and an average of 1.43% 
of genes preferring ZIP model. B A ratio is computed in each location cluster in each dataset to contrast 
the proportion of significant genes in each the four LRT tests after clustering to that before clustering. The 
median ratio across location clusters (y-axis; log-scale) is plotted for each dataset (x-axis). The gray horizontal 
line denotes a ratio value of one. The four LRT tests include the test on P vs ZIP (Aquamarine), P vs NB 
(Tangerine), NB vs ZINB (Polo Blue), and ZIP vs ZINB (pink). The significant genes are substantially reduced 
after clustering analysis in most datasets
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Finally, we note that one important source of gene expression heterogeneity across tis-
sue locations is the spatial distribution of cell types and the resulting cell type hetero-
geneity across locations. To examine whether the spatial distribution of cell types may 
contribute to the observed overdispersion and/or zero inflation, we performed condi-
tional analyses. Specifically, we focused on nine spatial transcriptomics datasets where 
we were able to obtain a published single-cell RNA sequencing reference data measured 
on the same tissue (Additional file 3: Table S3). On each of the nine datasets, we per-
formed reference-based cell type deconvolution using CARD [32] to infer the cell type 
composition on each tissue location. Afterwards, we carried out conditional analysis 
where we controlled for the estimated cell type compositions by including them in the 
count models as covariates (details in “Methods”). In the analysis, we found that the 
fraction of genes preferring the Poisson model after controlling for cell type composi-
tions on average increases by 1.01 fold (for 10x_HH) to 1.88 fold (for 10x_MB(C)), with 
a median increase of 1.22 fold across datasets (Additional file 7: Fig. S3). In addition, the 
proportion of overdispersed genes after controlling for cell type compositions substan-
tially reduced and is on average only 27.71% (10x_MB(S-P)) to 91.16% (10x_HH) of that 
before, with a median of 53.53%. However, the proportion of zero-inflated genes after 
controlling for cell type compositions may increase or decrease depending on the data-
set: for example, such proportion increases 1.65 fold for 10x_HH but decreases to 52% 
for 10x_HBC after controlling for cell type compositions. Overall, the conditional analy-
sis results suggest that the degree of overdispersion substantially decreases after control-
ling for cell type compositions, highlighting the importance of the spatial distribution of 
cell types in contributing to the observed over dispersion.

Discussion
We have presented a comprehensive analysis for characterizing the distributional prop-
erties of the count data collected from multiple spatial transcriptomics technologies. We 
have demonstrated that a substantial fraction of genes displays overdispersion or zero 
inflation that cannot be accounted for by a simple Poisson model. We found that zero 
inflation and overdispersion are different terms that potentially capture similar features 
of the data, as many zero-inflated genes are overlapped with overdispersed genes. In 
addition, we found that zero inflation generally can be accounted for by modeling over-
dispersion while overdispersion often cannot be accounted for by modeling zero infla-
tion. Consequently, we show that the Poisson model and the NB model, which accounts 
for overdispersion on top of the Poisson model, are sufficient for modeling the major-
ity of genes across most spatial transcriptomics technologies. Importantly, we show that 
a major source of overdispersion and zero inflation observed in spatial transcriptomics 
is gene expression heterogeneity across tissue locations partially caused by the spatial 
distribution of cell types. Indeed, when we control for cell type compositions or focus 
on a relatively homogeneous set of tissue locations, which represents the same cell type 
or locations that consists of a similar composition of cell types, the number of overdis-
persed and/or zero-inflated genes is substantially reduced. In the cluster-specific analy-
ses and cell type conditional analyses, a simple Poisson model is often sufficient to fit the 
gene expression data.
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Our results suggest that the excessive zero values observed in spatial transcriptomics 
can be accounted for by direct modeling of overdispersion without introducing an extra 
zero inflation term. Consequently, the zero values in spatial transcriptomics potentially 
reflect biological variation and unlikely represent technical artifacts. Therefore, just like 
in scRNA-seq studies with UMI data, imputation of zero values in spatial transcriptom-
ics may not be desirable and may induce unwanted noise and negatively impact down-
stream analysis [25–27]. In addition, because the major source of overdispersion and 
zero inflation is expressing heterogeneity across locations partially caused by the spatial 
distribution of cell types, direct testing of overdispersion and/or zero inflation in each 
location cluster could help determine the level of heterogeneity in the cluster, thus facili-
tating the determination of the optimal number of clusters in the data. A recent study 
in scRNA-seq proposes the HIPPO framework to leverage excessive zeros on top of the 
Poisson model to explain cellular heterogeneity and determine the number of cell type 
clusters [25]. Adaption of similar approaches from scRNA-seq studies to spatial tran-
scriptomics will likely improve spatial clustering analysis and facilitate various down-
stream analysis such as the identification of spatially expressed genes [18, 33, 34].

As a side note, we have included the total count per location as an offset term in the 
mean component of each of the four count models following that of [18, 20, 22]. Due to 
variation of capture efficiency or imaging quality, the total count per location can vary 
quite substantially across tissue locations. Consequently, including total count per loca-
tion accounts for the variability across tissue locations and often improves the fitting of 
different count models for the majority of datasets (Additional file 7: Fig. S4). Therefore, 
explicit adjustment for total count per location is also recommended for modeling spa-
tial transcriptomics dataset.

Conclusion
In conclusion, our results suggest that the excessive zeros in spatial transcriptomics are 
not due to zero inflation and that it is not necessary to include a zero inflation compo-
nent for the statistical modeling of gene expression counts from spatial transcriptomics. 
Instead, the Poisson model and the overdispersed Poisson models such as the negative 
binomial model are often sufficient for modeling the majority of genes across most spa-
tial transcriptomics technologies.

Methods
Spatial transcriptomics datasets

We examined a total of 20 spatial transcriptomics datasets collected from 11 different 
technologies listed in detail below.

Spatial transcriptomics (two datasets)

Spatial transcriptomics (ST) is a technology that allows for the visualization and quanti-
tative analysis of the transcriptome with spatial resolution on individual tissue sections 
[13]. ST places tissue sections on glass slides with arrayed oligonucleotides containing 
positional barcodes placed on locations known as spots. Each spot is of 100 μm in diam-
eter, with a 200-μm center to center distance placed between spots. We downloaded 
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the mouse olfactory bulb data and the human breast cancer data [13] from the Spatial 
Research lab (https://​www.​spati​alres​earch.​org/​resou​rces-​publi​shed-​datas​ets/​doi-​10-​
1126s​cience-​aaf24​03/). We used files “MOB Replicate 11” (denoted as ST_MOB for 
mouse olfactory bulb) and “Breast Cancer Layer 2” (denoted as ST_HBC for human 
breast cancer), which contain 16,218 and 14,789 genes measured on 262 and 251 spatial 
locations, respectively. After removing the genes that are not expressed on any spots, we 
analyze the final datasets that contain 16,218 and 14,789 genes.

10X Visium (seven datasets)

The 10x Genomics Visium is a platform that builds on the foundation of the Spatial 
Transcriptomics technique, with improvement on resolution, scale, and workflow (10x 
Genomics Space Ranger 1.1.0). In 10x Visium technology, each spot/location is of 55 μm 
in diameter, with a 100-μm center to center distance allocated between spots. We down-
loaded seven visium datasets from the 10X Visium spatial gene expression repository 
under item Visium Spatial Gene Expression 1.1.0 (https://​www.​10xge​nomics.​com/​resou​
rces/​datas​ets/). The seven datasets include the human breast cancer data [35] (denoted 
as 10x_HBC, block A section 1; with 36,601 genes, 3798 locations, and 24,923 analyzed 
genes after removing genes that are not expressed on any spots), the human heart data 
[36] (denoted as 10x_HH; 36,601 genes, 4247 locations, and 20,917 analyzed genes), the 
human lymph node data [37] (denoted as 10x_HL, 36,601 genes, 4035 locations, and 
25,187 analyzed genes), the mouse kidney coronal section data [38] (denoted as 10x_
MK; 32,285 genes, 1438 locations, and 20,100 analyzed genes), the mouse brain coro-
nal section data [39] (denoted as 10x_MB(C); 32,285 genes, 2702 locations, and 21,949 
analyzed genes), the mouse brain sagittal-posterior data [40] (denoted as 10x_MB(S-P); 
32,285 genes, 3355 locations, and 21,334 analyzed genes), and the mouse brain sagittal-
anterior data [41] (denoted as 10x_MB(S-A); 32,285 genes, 2695 locations, and 21,363 
analyzed genes).

Slide‑seq (one dataset)

Slide-seq is a technology that infers RNA locations by sequencing [14]. This method 
transfers RNA from tissue sections onto a surface covered in uniquely DNA-barcoded 
10-μm microparticles (“beads”) with known positions. It enables spatially resolved gene 
expression data at resolutions comparable to the sizes of individual cells. We down-
loaded the mouse cerebellum data [14] from Broad institute’s single-cell repository 
(https://​singl​ecell.​broad​insti​tute.​org/​single_​cell) with ID SCP354. We obtained the sec-
tion “Puck_180430_6,” which contains 18,671 genes and 25,551 locations. After remov-
ing the genes that are not expressed on any spots, we analyzed the final dataset that 
contains 17,754 genes.

Slide‑seqV2 (one dataset)

Slide-seqV2 is a technology that makes modifications on library generation, bead syn-
thesis, and array indexing to markedly improve the mRNA capture sensitivity of the 
original Slide-seq technology [15]. We downloaded the mouse brain Slide-seqV2 data-
set [15] from the Broad institute’s single-cell repository with ID SCP815. We obtained 
the section “Puck_190921_19,” which contains 22,683 genes and 33,611 locations. After 

https://www.spatialresearch.org/resources-published-datasets/doi-10-1126science-aaf2403/
https://www.spatialresearch.org/resources-published-datasets/doi-10-1126science-aaf2403/
https://www.10xgenomics.com/resources/datasets/
https://www.10xgenomics.com/resources/datasets/
https://singlecell.broadinstitute.org/single_cell
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removing the genes that are not expressed on any spots, we analyzed the final dataset 
that contains 21,625 genes.

High‑definition spatial transcriptomics (one dataset)

High-definition spatial transcriptomics (HDST) is a technology that captures RNA 
from histological tissue sections on a high-resolution (2 μm) and high-density spa-
tially barcoded bead array [16]. We downloaded the HDST dataset collected on the 
mouse olfactory bulb [16] from the Broad institute’s single-cell repository with ID 
SCP420. We used the file “CN24_D1,” which contains 19,950 genes and 181,367 loca-
tions. All genes in the data are expressed on at least one location.

STARmap (one dataset)

Spatially resolved transcript amplicon readout mapping (STARmap) is a technology 
that allows for three-dimensional (3D) intact-tissue RNA sequencing by integrating 
hydrogel-tissue chemistry, targeted signal amplification, and in  situ sequencing at 
single-cell resolution [42]. We downloaded the data collected on mouse visual cor-
tex [42] from STARmap repository (https://​www.​dropb​ox.​com/​sh/​f7ebh​eru1l​bz91s/​
AABYS​SjSTp​pBmVm​Wl2H4s_​K-a?​dl=0), which contains 1020 genes and 1549 loca-
tions/cells. All genes in the data are expressed on at least one location.

LCM‑seq (one dataset)

Laser capture microdissection sequencing (LCM-seq) is a technology that character-
izes the transcriptomics on laser capture micro-dissected villus segments and sub-
sequent spatial transcriptomics reconstruction [43]. We downloaded data collected 
on mouse jejunum [43] from zenodo (https://​zenodo.​org/​record/​13207​34), which 
contains 27,998 genes and 1383 locations. After removing the genes that are not 
expressed on any spots, we analyzed the final dataset that contains 14,220 genes.

NICHE‑seq (one dataset)

The NICHE-seq is a technology that combines photoactivatable fluorescent markers, 
two-photon laser scanning microscopy (TPLSM), and flow cytometry–based fluores-
cence-activated cell sorting (FACS) coupled to massively parallel single-cell RNA-Seq 
(MARS-Seq) [44]. They further perform tissue dissociation by utilizing transgenic 
mice’s expressing a photoactivatable green fluorescent protein (PA-GFP) to get the 
spatial information. We downloaded data collected on mice immune niches [44] from 
Gene Expression Omnibus repository with ID GSE104054, specific file GSM2788364_
AB1655.txt.gz, which contains 34,016 genes and 384 locations. After removing the 
genes that are not expressed on any spots, we analyzed the final dataset that contains 
11,364 genes.

https://www.dropbox.com/sh/f7ebheru1lbz91s/AABYSSjSTppBmVmWl2H4s_K-a?dl=0
https://www.dropbox.com/sh/f7ebheru1lbz91s/AABYSSjSTppBmVmWl2H4s_K-a?dl=0
https://zenodo.org/record/1320734
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Tomo‑seq (one dataset)

Tomo-seq is a technology that retains spatial information by cryo-sectioning the tis-
sue sample along a specific axis and then performing RNA sequencing on the indi-
vidual sections [11]. We obtained data collected on male C. elegans [11] from Gene 
Expression Omnibus repository with ID GSE114723, which includes 16,869 genes and 
96 locations. All genes are expressed on at least one location.

Paired cell sequencing (one dataset)

Paired cell sequencing (NICHE-seq) is a technology that utilized massively parallel sin-
gle-cell RNA-Seq (MARS-Seq) to sequence pairs of hepatocytes and adjacent endothe-
lial cells [45]. They later used smFISH to obtain zonation profile to determine the tissue 
location, and thus get the zonation patterns of endothelial genes. We downloaded data 
on liver endothelial cells (LECs) [45] from Gene Expression Omnibus repository with ID 
GSE108561, which contains 33,948 genes and 4621 locations. After removing the genes 
that are not expressed on any spots, we analyzed the final dataset that contains 19,023 
genes.

seqFISH (one datasets)

Sequential fluorescence in situ hybridization (seqFISH) is a technology that enables the 
identification of thousands of RNA transcripts directly in single cells with their spatial 
context preserved by labeling transcripts with fluorescent probes in sequential rounds 
of hybridization [5]. We downloaded expression data from [5] and extracted cell counts 
from the region annotated as number 43 containing 249 genes and 257 cells. All genes 
are expressed in at least one cell.

seqFISH+ (one dataset)

SeqFISH+ improves the previous seqFISH technique with higher accuracy and sub-dif-
fraction-limit resolution [4]. We downloaded the olfactory bulb of the mouse brain [4] 
from Cai’s lab (https://​github.​com/​CaiGr​oup/​seqFI​SH-​PLUS). We analyzed the olfac-
tory bulb data, which contains 10,000 genes and 2050 locations. All genes are expressed 
in at least one cell.

MERFISH (one dataset)

Multiplexed error-robust fluorescence in situ hybridization (MERFISH) is the technol-
ogy that allows imaging individual RNA molecules by performing imaging-based cell 
type identification paired with multiplexed in  situ hybridization [34]. We downloaded 
data collected from the mouse hypothalamic preoptic region [34] from github (https://​
github.​com/​Teich​lab/​Spati​alDE/​blob/​master/​Analy​sis/​MERFI​SH/​data/​rep6/​middle_​
exp_​mat.​csv). The data contains 140 genes measured on 1056 locations. All genes are 
expressed in at least one cell.

Cross‑gene and gene‑specific analysis

For each dataset in turn, we extracted the gene expression count matrix and removed 
genes with zero counts on all spatial locations. We then performed multiple analyses 
described as follows.

https://github.com/CaiGroup/seqFISH-PLUS
https://github.com/Teichlab/SpatialDE/blob/master/Analysis/MERFISH/data/rep6/middle_exp_mat.csv
https://github.com/Teichlab/SpatialDE/blob/master/Analysis/MERFISH/data/rep6/middle_exp_mat.csv
https://github.com/Teichlab/SpatialDE/blob/master/Analysis/MERFISH/data/rep6/middle_exp_mat.csv
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First, we computed for each gene three summary statistics: mean, variance, and pro-
portion of zeros. We visualized the relationship between the variance and the mean as 
well as the relationship between the zero proportion and the mean, across all genes. 
In addition, we fitted these two relationships across all genes using a cross-gene Pois-
son model or a cross-gene negative binomial (NB) model. Specifically, the relationship 
between the variance (σ2) and the mean (μ) is described as σ2 = μ by the cross-gene Pois-
son model and is described as σ2 = μ + μ2/φ by the cross-gene NB model, where φ is the 
overdispersion parameter. The relationship between the proportion of zero (p) and the 
mean (μ) is described as p = e−μ by the cross-gene Poisson model and is described as 
p = (1 + φ/μ)−φ by the cross-gene NB model. We used the nonlinear least squares tech-
nique implemented in the nls function in R [46] to fit the cross-gene NB model, where 
we used the default Gauss-Newton algorithm to obtain the dispersion parameter φ. We 
then obtained the estimated variance and zero proportion based on the mean using 
either the cross-gene Poisson or the cross-gene NB model. We evaluated the estimation 
accuracy by computing the mean square error (MSE) based on either the zero propor-
tion or the log transformed variance.

Second, we examined one gene at a time and fitted expression data using four count 
models. The four count models include Poisson, NB, zero-inflated Poisson (ZIP), and 
zero-inflated negative binomial (ZINB). We used the R package MASS [47] to fit Poisson 
and NB and used the R package pscl [48, 49] to fit ZIP and ZINB. For each gene in turn, 
we obtained the estimated mean, variance, and zero proportion from each of the four 
models according to the formula in Additional file 4: Table S4. During model fitting, we 
included the total read depth on each spatial location as an offset term in the mean com-
ponent of different models. In addition, we relied on sparse matrix operations and used 
parallel computing functions in the R package Matrix to improve computation efficiency 
and reduce memory usage. Note that the NB model failed to converge in an appreciable 
fraction of genes (mean = 24.84%, median = 27.81% across datasets), because many of 
these genes (mean = 77.63%, median = 87.24%) have an estimated variance below the 
estimated mean. For genes where the likelihood function of the NB model failed to fit, 
we used the generalized estimating equations (GEE) method implemented in the gee R 
package with an identity correlation structure to estimate the mean and variance param-
eters for the NB model. With the mean and variance estimates from GEE, we obtained 
the dispersion parameter φ for every gene using the formula σ̂ 2 = µ̂+ µ̂2/φ , where σ̂ 2 is 
the estimated variance and µ̂ is the estimated mean. We plugged in the mean and disper-
sion estimates from GEE into the likelihood function of the NB model and obtained AIC. 
We then compared the AIC of the NB model using the GEE estimates with that using the 
estimates from the un-converged NB model. We chose the estimates that yielded the 
smaller AIC as the final estimates for the NB model.

Third, we performed formal hypothesis tests for each gene in turn to examine whether 
the gene of focus displays zero inflation and whether it displays overdispersion. Specifi-
cally, we carried out four sets of likelihood ratio tests using the R package lmtest [50]. The 
first test contrasts a Poisson model with a zero-inflated Poisson model (ZIP) and exam-
ines whether the gene of focus displays zero inflation that is not accounted for by a Pois-
son model. The second test contrasts a Poisson model with a negative binomial model 
(NB) and examines whether the gene displays overdispersion that is not accounted for 
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by a Poisson model. The third test contrasts a NB model with a zero-inflated negative 
binomial model (ZINB) and examines whether the gene displays zero inflation that 
is not accounted for by a NB model. The fourth test contrasts a zero-inflated Poisson 
model (ZIP) and a zero-inflated negative binomial model (ZINB) and examines whether 
an overdispersion component is needed on top of modeling zero inflation. For all these 
tests, we declared significance based on a Bonferroni corrected p-value threshold of 0.05 
that adjusted for the number of genes tested in each dataset. In addition, we examined 
the overlap between two gene sets—genes with significant overdispersion and genes 
with significant zero inflation—by calculating the proportion of the former that are also 
identified as the latter, and the proportion of the latter that are also identified as the for-
mer. Finally, besides formal hypothesis tests, we also calculated Akaike information cri-
terion (AIC) for each count model and selected the best model with the lowest AIC as 
the preferred model for the gene of focus.

Location clusters and cluster‑specific analysis

We examined whether the observed zero inflation and/or overdispersion can be 
accounted for by gene expression heterogeneity across locations. To do so, we catego-
rized the tissue locations in each dataset into different clusters either directly using 
the clustering labels from the original study (for five datasets: seqFISH+, STARmap, 
LCM-seq, Slide-seq, and HDST), or, in the absence of such information, by performing 
our own clustering analysis on the tissue locations (for the remaining 15 datasets). For 
our own clustering analyses in each of the 15 datasets, we followed a standard proce-
dure recommended by Seurat [51]. Specifically, we used NormalizeData function with 
default setting to normalize the gene expression measurement on each location, where 
the function divided the read count on the location by the total counts there, multiplied 
by a scale factor of 10,000, and performed a log transformation afterwards (by adding 
a pseudo-count of 1 to avoid log transforming zero values). We obtained the top 2000 
highly variable genes using the FindVariableFeatures function in the variance stabilizing 
transformation procedure (vst) in Seurat. We then extracted the top 15 principal compo-
nents from the highly variable genes and performed Louvain clustering with the resolu-
tion parameter set to be 0.5. The clustering results for these data are shown in Additional 
file 7: Fig. S5 with detailed clustering information provided in Additional file 5: Table S5.

Clustering tissue locations effectively group together tissue locations that have similar 
gene expression profiles. In particular, for spatial transcriptomics with single-cell reso-
lutions, clustering tissue locations is equivalent to clustering these locations/cells into 
distinct cell types. For spatial transcriptomics with regional resolutions, such cluster-
ing effectively allocates tissue locations into distinct tissue domains or into groups of 
locations that contains similar cell type compositions. With location clustering informa-
tion, we performed the same sets of analyses described in the previous section, but in a 
cluster-specific fashion. Specifically, we performed model comparison by examining the 
AICs of the four count models for each gene in each cluster. We performed hypothesis 
tests for every gene in each cluster to contrast the Poisson model with either the NB 
model or the ZIP model. Such cluster-specific analyses characterize the distributional 
property of the expression count data in each location cluster separately, potentially 
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removing the expression heterogeneity due to the spatial localization pattern of cell 
types and the expression variation across location clusters.

Finally, we examined the extent to which the observed zero inflation and/or over-
dispersion can be accounted for by the spatial distribution of cell types across tis-
sue locations. To do so, we focused on nine spatial transcriptomics datasets where 
we were able to identify a corresponding single-cell RNA sequencing reference data 
[52–56] measured on the same tissue. The nine datasets include Slide-seq, 10x Visium 
(human breast cancer, mouse brain coronal section, mouse brain sagittal-anterior 
data, mouse brain sagittal-posterior, mouse kidney coronal section), and spatial 
transcriptomics (human breast cancer and mouse olfactory bulb) (Additional file  6: 
Table  S6). For each dataset in turn, we performed reference-based cell type decon-
volution using CARD [32] to infer the cell type composition on each tissue location. 
Afterwards, we treated the estimated cell type compositions as covariates in the count 
models and carried out the same set of analysis described in the previous section. 
Specifically, for each gene in turn, we performed model comparison by examining the 
AICs of the four count models and performed hypothesis tests based on the afore-
mentioned four LRTs. These analyses allow us to characterize the distributional prop-
erty of the expression count data while controlling for cell type compositions across 
tissue locations.
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