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Spatially resolved transcriptomic technologies perform gene 
expression profiling on many tissue locations with spatial 
localization information1, enabling the characterization of 

transcriptomic landscapes on tissues2–10. Despite fast technologi-
cal development, however, most technologies are of limited spatial 
resolution. In particular, almost all sequencing-based technologies 
collect expression measurements on tissue locations that consist of 
a few to a few dozen single cells belonging to potentially distinct cell 
types11–14. Because each measured location contains a mixture of cells, 
these sequencing-based technologies effectively quantify the aver-
age expression level across many cells on the location. Consequently, 
performing cell-type deconvolution on tissue locations becomes an 
essential analytic task for disentangling the spatial localization of cell 
types and characterizing the complex tissue architecture15,16.

Deconvolution of spatial transcriptomics data requires cell-type- 
specific gene expression information and tailored spatial methods. 
Cell-type-specific gene expression information is currently readily 
available from single-cell RNA-sequencing (scRNA-seq) studies17, 
which have been previously used for deconvoluting bulk RNA-seq 
data18 by recently developed deconvolution methods, including 
MuSiC19, SCDC20 and Bisque21. These methods can, in principle, be 
directly applied to spatial transcriptomics and are being adapted so 
by several recently developed methods22–30, such as RCTD23, stereo-
scope28, SPOTlight22, cell2location29 and spatialDWLS30 (details in 
Supplementary Notes). All of these methods, however, do not make 
use of the rich spatial localization information available in spatial 
transcriptomics.

Spatial localization information in spatial transcriptomics mea-
sures the relative distance between tissue locations and contains 
potentially invaluable information for deconvolution. Specifically, 
a tissue is composed of multiple cell types that are segregated in 
a spatially correlated fashion into tissue domains31–34, which are 
characterized by a domain-specific composition of cell types, with 
similar cell types colocalized spatially35,36. Histological character-
ization of various tissues (https://atlas.brain-map.org/, https://
www.spatialresearch.org and https://phil.cdc.gov/), including 

hematoxylin and eosin (H&E) staining images accompanying 
spatial transcriptomics datasets12,14, highlights the spatial segre-
gation of cell types and neighboring cell-type composition simi-
larity. In single-cell resolution spatial transcriptomics37,38, we also 
observed that similar cell types tend to colocalize, with colocal-
ization patterns decaying with distance (Supplementary Figs. 1 
and 2). Consequently, neighboring locations on the tissue likely 
contain more similar cell-type compositions than locations that 
are far away. Therefore, modeling the neighborhood similarity in 
cell-type compositions and accommodating their spatial correla-
tion would allow us to borrow composition information across 
locations on the entire tissue section to enable accurate deconvo-
lution of spatial transcriptomics on each individual location.

Here, we develop a method, named conditional autoregressive- 
based deconvolution (CARD), to perform such spatially informed 
deconvolution of cell types for spatial transcriptomics. CARD 
builds upon a non-negative matrix factorization model to use the 
cell-type-specific gene expression information from scRNA-seq 
data for deconvoluting spatial transcriptomics data. A unique fea-
ture of CARD is its ability to accommodate the spatial correlation 
structure in cell-type composition across tissue locations by a con-
ditional autoregressive (CAR) modeling assumption39,40. As a result, 
CARD can take advantage of the spatial correlation structure to 
enable accurate and robust deconvolution of spatial transcriptomics 
data across technologies with different spatial resolutions and in 
the presence of mismatched scRNA-seq references. In addition, 
modeling spatial correlation allows CARD to impute cell-type com-
positions as well as gene expression levels on new locations of the 
tissue, facilitating the construction of a refined spatial map with an 
arbitrarily high resolution for any spatial transcriptomics technolo-
gies; both of these features are in direct contrast to a recent method 
BayesSpace41 that can only enhance Spatial Transcriptomics (ST) or 
10x Visium data with a fixed resolution of either six or nine times 
higher than that of the original. Importantly, an extension of CARD 
is also capable of performing reference-free deconvolution without 
an scRNA-seq reference. We develop a computationally efficient 
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algorithm for constrained maximum likelihood inference, making 
CARD scalable to data with tens of thousands of spatial locations 
and tens of thousands of genes. We illustrate the benefits of CARD 
through extensive simulations and applications to four published 
spatial transcriptomics studies with distinct technologies, spatial 
resolutions, tissue structures and scRNA-seq references.

Results
Simulations. CARD is described in the Methods, with its techni-
cal details provided in the Supplementary Notes and its method 
schematic shown in Fig. 1. We performed simulations to evaluate 
the performance of CARD and compared it with six existing decon-
volution methods: MuSiC, SPOTlight, RCTD, cell2location, spa-
tialDWLS and stereoscope (Methods). Briefly, we used scRNA-seq 
data42 to construct spatial transcriptomics, and we varied a noise 
level parameter pn to modify cell-type compositions and spatial cor-
relation patterns across locations (Supplementary Figs. 3 and 4). 
The simulated data are realistic, preserving data features observed 
in the published spatial transcriptomics data (Supplementary  
Fig. 5). We examined four simulation settings, each of which consists 
of five simulation replicates. In each replicate, we applied various 
deconvolution methods to deconvolute the spatial transcriptomics 
data using either the same set of scRNA-seq data or its modified 
version or another set as a reference. We then followed ref. 19 and 
quantified the deconvolution performance by computing the root 

mean square error (r.m.s.e.) between the estimated cell-type com-
position and the underlying truth on each location. We primarily 
displayed r.m.s.e. difference plots where we contrasted the r.m.s.e. 
of other methods with respect to CARD following refs. 43,44. We kept 
the original r.m.s.e. and rank plots in the supplements, which show 
consistent results.

We first explored a baseline analysis scenario (scenario 1), where 
we used the same scRNA-seq data used in the simulations for decon-
volution. Here, CARD outperforms all other deconvolution meth-
ods across all simulation settings (median r.m.s.e. = 0.079), with 
9%, 8%, 33%, 7%, 23% and 18% improvement in terms of r.m.s.e. 
compared to MuSiC (0.087), RCTD (0.086), SPOTlight (0.118), 
cell2location (0.085), spatialDWLS (0.103) and stereoscope (0.096), 
respectively (Fig. 2, scenario 1, and Supplementary Figs. 6 and 8). 
In addition, CARD identifies the dominant cell type on each spatial 
location accurately, as measured by area under the curve (AUC) and 
adjusted rand index (ARI; Supplementary Fig. 9).

To examine the robustness of different deconvolution meth-
ods, we explored four additional scenarios (Supplementary Notes) 
where we removed one cell type in the scRNA-seq reference (sce-
nario 2), added one cell type (scenario 3), used misclassified cell 
types (scenario 4) or used other scRNA-seq data sequenced on a 
different platform for deconvolution (scenario 5). Compared to sce-
nario 1, the performances of all methods remain similar in scenario 
3 (except SPOTlight) and generally are reduced in other scenarios, 
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Fig. 1 | Schematic overview of CARD. CARD is designed to deconvolute spatial transcriptomics data and infer cell-type composition on each spatial 
location based on the reference scRNA-seq data. CARD requires scRNA-seq data with cell-type-specific gene expression information (left) along with 
spatial transcriptomics data with localization information (right). With these two inputs, CARD performs deconvolution through a non-negative matrix 
factorization framework and outputs the estimated cell-type composition across spatial locations (bottom). A unique feature of CARD is its ability to 
account for the spatial correlation of cell-type compositions across spatial locations through a CAR model (top). By accounting for the spatial correlation 
of cell-type compositions across spatial locations, CARD is also capable of imputing cell-type compositions and gene expression levels on locations not 
measured in the original study, facilitating the construction of a refined high-resolution spatial map on the tissue (bottom).
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although their relative ranks remain largely consistent across sce-
narios. In addition, CARD outperforms the other methods in all 
settings, with its performance gains more apparent than scenario 
1 (Fig. 2). Specifically, in scenario 2, CARD loses a median of 3% 
accuracy across settings compared to using the original scRNA-seq 
data (Supplementary Notes). However, CARD is more accurate 
than the other methods across settings, with a 13–32% accuracy 
improvement (Fig. 2 and Supplementary Figs. 10–14). In scenario 
3, CARD only loses a median of 0.4% accuracy across settings com-
pared to using the original scRNA-seq data. It remains the most 
accurate method across settings with 7–40% accuracy improve-
ment over the other methods (Fig. 2 and Supplementary Fig. 15). 
In scenario 4, CARD loses a median of 4% accuracy compared to 
using the original scRNA-seq data (Fig. 2 and Supplementary Fig. 
16). However, CARD is again more accurate than the other methods 
across settings (Fig. 2 and Supplementary Fig. 17), with 6–32% accu-
racy improvement across misclassified cell types (Supplementary  
Fig. 18). In scenario 5, CARD loses a median of 10% accuracy 

across settings compared to using the original scRNA-seq data, 
but it remains the most accurate method across settings with 
5–35% accuracy improvement over the other methods (Fig. 2 and 
Supplementary Fig. 19).

We examined the deconvolution accuracy of different methods 
at distinct cell-type resolution levels (Supplementary Notes) and 
found that the deconvolution accuracy of most methods improved 
initially with increasing number of sub-cell types (Supplementary 
Fig. 20) and reached a saturation point with a sufficiently large num-
ber of sub-cell types, where many sub-cell types are no longer dis-
tinguishable from each other (Supplementary Fig. 21). Regardless 
of the cell-type resolution, the relative performances of most decon-
volution methods remain consistent (Supplementary Fig. 22). We 
also performed additional model-based simulations where we can 
more effectively control for spatial correlation (Supplementary 
Notes) and found, as expected, that the advantage of CARD over 
the other methods shows a clear dependency on spatial correlation 
(Supplementary Fig. 23).
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Fig. 2 | Comparison of deconvolution accuracy of different methods in simulations under analysis scenarios 1–5. In analysis scenario 1, the same 
scRNA-seq dataset used in simulations is used as the reference for deconvolution. In analysis scenario 2, the same scRNA-seq dataset but with one 
missing cell type (for example, neurons) is used as the reference for deconvolution. In analysis scenario 3, the same scRNA-seq dataset but with one 
additional cell type (for example, blood cells) is used as the reference for deconvolution. In analysis scenario 4, the same scRNA-seq reference dataset but 
with a misclassified cell type in the reference is used for deconvolution. In analysis scenario 5, a different scRNA-seq reference sequenced from a different 
platform but with similar cell types is used as the reference for deconvolution. Compared deconvolution methods (x axis) include MuSiC (purple), RCTD 
(yellow), SPOTlight (orange), cell2location (green), spatialDWLS (blue) and stereoscope (blue gray). Simulations were performed under different spatial 
correlation strength, as represented by the proportion of noisy locations (pn). High pn corresponds to low spatial correlation. We calculated the r.m.s.e. 
between the estimated cell-type compositions and the true cell-type compositions for each method to measure its deconvolution performance. We 
further contrasted r.m.s.e. of the other methods with respect to that of CARD by computing an r.m.s.e. difference to remove the unnecessary difficulty level 
variation across replicates. An r.m.s.e. difference (y axis) below zero suggests that CARD performs better than other methods. Differences of r.m.s.e. across 
five simulation replicates (n = 5) were displayed in the form of box plots. Each box plot ranges from the third and first quartiles with the median as the 
horizontal line, while whiskers represent 1.5 times the interquartile range from the lower and upper bounds of the box.
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Mouse olfactory bulb (MOB) data. We applied CARD and the other 
methods to analyze four published spatial transcriptomics datasets 
that include two obtained from ST, one from Slide-seqV2 and one 
from 10x Visium (details in Supplementary Notes). In each dataset, 
the majority of marker genes (92% by Moran’s I test and 54% by 
Geary’s C test) display statistically significant spatial autocorrelation 
(adjusted P value of <0.05; Supplementary Table 1), with the semi-
variance generally increasing with distance (Supplementary Fig. 24) 
and the expression correlation between locations decreasing with 
distance (Supplementary Fig. 25), supporting cell-type composi-
tion similarity between neighboring locations. We used scRNA-seq 
data from sequencing platforms different from the spatial transcrip-
tomics for deconvolution.

We first examined MOB data14, where we used scRNA-seq 
data45 from 10x Chromium on the same tissue for deconvolution 
(Supplementary Tables 2 and 3). The MOB data consist of four 
main anatomic layers organized in an inside–out fashion annotated 
based on H&E staining: the granule cell layer (GCL), the mitral cell 
layer (MCL), the glomerular layer (GL) and the nerve layer (ONL;  
Fig. 3a and Methods). The cell-type compositions inferred by CARD 
accurately depict such expected layered structure46, as is evident by 
visualizing either the first principal component (PC1) of the esti-
mated cell-type composition matrix (Supplementary Fig. 26) or the 
inferred dominant cell types (Fig. 3b, Supplementary Table 4 and 
Supplementary Fig. 27). By contrast, MuSiC, SPOTlight, spatialD-
WLS and stereoscope were unable to distinguish the three outer 
layers from each other, while RCTD was unable to clearly distin-
guish the ONL from the GL. RCTD, cell2location and spatialDWLS 
showed a blurry boundary between GCL and MCL/GL on top of 
the tissue section, while cell2location could not clearly identify the 
boundaries between MCL and GL.

Careful examination of the cell-type composition and cor-
responding cell-type marker genes in different layers further 
confirmed the accuracy of CARD deconvolution (Fig. 3c,d and 
Supplementary Notes). For example, CARD distinguished correctly 
the adjacent MCL and GL, with distinct enrichment of mitral/tufted 
cells and periglomerular cells in the two layers, respectively, despite 
the similarity between these two cell types; however, others cannot 
(Supplementary Figs. 28 and 29). We also observed that multiple 
cell types inferred by CARD show spatial colocalization patterns 
(Fig. 3e and Supplementary Notes).

A key benefit of CARD is its ability to model the spatial correla-
tion structure across spatial locations, which facilitates the imputa-
tion of cell-type composition and gene expression on locations not 
measured in the original study. We performed location masking 
analysis for CARD and validated that the imputed expression lev-
els are highly consistent with the truth regardless of the percent-
age of masked locations (Pearson’s correlation = 0.44–0.56; Fig. 3f 
and Supplementary Fig. 30). Imputation on new locations allows us 

to construct a refined spatial map of cell-type composition or gene 
expression with arbitrarily high spatial resolution (Methods), which 
captures fine-grained details of the layered structure in the olfac-
tory bulb (Fig. 3g and Supplementary Figs. 31 and 32) and facilitates 
the identification of marker genes with spatial expression patterns 
(Supplementary Fig. 33 and Supplementary Notes). By contrast, 
the fixed resolution enhancement by BayesSpace failed to capture 
the expected spatial expression pattern for a few marker genes at 
high resolution (Supplementary Figs. 34 and 35). We quantitatively 
compared the performance of CARD and BayesSpace for resolution 
enhancement by performing clustering analysis on the imputed 
expression data (Methods). We found that the clustering results 
based on CARD displayed a clear inside–out layered structure that 
resembles the anatomic organization of the olfactory bulb more so 
than that obtained with the original scale data or by BayesSpace 
(Supplementary Fig. 36). CARD is also computationally efficient; 
CARD takes only 0.4 s to construct the refined expression map for 
all genes, is 5,816 times faster than BayesSpace and represents a scal-
able solution for fine map reconstruction in much larger datasets.

Human pancreatic ductal adenocarcinoma (PDAC) data. The sec-
ond dataset we examined was a human PDAC dataset from ST47. For 
deconvolution, we first used a matched scRNA-seq dataset for the 
same individual obtained through inDrop47 (denoted as PDAC-A). 
The PDAC data contain multiple tissue regions (cancer, pancreatic, 
ductal and stroma regions) annotated by histologists based on H&E 
staining47 (Fig. 4a). Through deconvolution, CARD located vari-
ous pancreatic and tumoral cell types into different tissue regions  
(Fig. 4b). The PC1 of the estimated cell-type composition matrix 
from CARD clearly captured a gross regional segregation between 
cancer and non-cancer regions, between the ductal and stroma 
regions and between the pancreatic and ductal regions. By contrast, 
none of the other methods were as effective in differentiating these 
regions (Supplementary Figs. 37– 40 and Supplementary Notes). The 
dominant cell types on each location from CARD also captured the 
segregation between cancer and non-cancer regions (Supplementary 
Fig. 41), with neoplastic cells, such as cancer clone A and clone B 
cells, highly enriched in the former (Wilcoxon test P = 1.9 × 10–48 
and 1.1 × 10–43, respectively; Fig. 4d). CARD also reveals the distinct 
distribution of two macrophage subpopulations between the cancer 
and non-cancer regions (Fig. 4d), representing a key functional sig-
nature of the regional compartmentalization of the cancer tissue that 
was missed by the other methods (Supplementary Fig. 42).

CARD further divides the cancer region into two subregions, a 
pattern missed by the other methods (Fig. 4b,c and Supplementary 
Figs. 41 and 43): an upper subregion dominated by cancer clone 
A cells with an enrichment of marker gene TM4SF1 and a bottom 
subregion dominated by cancer clone B cells with an enrichment of 
marker gene S100A4 (Fig. 4b,c and Supplementary Fig. 43). S100A4 

Fig. 3 | Analyzing MOB data. a, H&E staining of the olfactory bulb (top) displays four anatomic layers that are organized in an inside–out fashion (bottom): 
the GCL, MCL, GL and ONL. b, Left, on each spatial location, the dominant cell type inferred from four different deconvolution methods is shown. The 
examined cell types include granule cells (GC), olfactory sensory neurons (OSNs), periglomerular cells (PGC), mitral/tufted cells (M-TC) and external 
plexiform layer interneurons (EPL-IN). EPL-IN is not the dominant cell type on any spatial location and is thus not shown in b. Compared deconvolution 
methods include MuSiC, RCTD, SPOTlight, cell2location, spatialDWLS, stereoscope and CARD. Right, ARI (top y axis) and purity (bottom y axis), which 
quantify the similarity between the inferred dominant cell types from different methods (x axis) and the anatomic layers annotated based on the H&E 
images, are shown. c, A spatial scatter pie plot displays inferred cell-type composition on each spatial location from different deconvolution methods. 
d, Top, the proportion of each of the four cell types inferred by CARD on each spatial location. Bottom, expression levels of the four corresponding 
cell-type-specific marker genes. e, Correlations in cell-type proportion across spatial locations between pairs of cell types inferred by CARD. Color is 
scaled by the correlation value. f, Accuracy of CARD imputation in the masking analysis across ten replicates (n = 10). A fixed percentage of locations 
are masked as missing (x axis), and CARD is used to impute gene expression on the masked locations. Three different metrics (y axis) are used to 
evaluate imputation accuracy in terms of the similarity between the imputed expression and true expression on masked locations: Pearson’s correlation, 
Spearman’s correlation and m.s.e. Each box plot ranges from the first and third quartiles with the median as the horizontal line, while whiskers represent 
1.5 times the interquartile range from the lower and upper bounds of the box. g, CARD imputes gene expression for four marker genes on a fine grid set of 
spatial locations (number of grid points = 500, 1,000 or 2,000), resulting in a refined spatial map of gene expression.
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is a prognostic marker for early-stage pancreatic cancer, and its spa-
tial enrichment suggests that the bottom cancer subregion is likely 
an early cancer region. By contrast, TM4SF1 is essential for PDAC 
migration and invasion48–50, and its spatial enrichment suggests that 
the upper cancer subregion is likely a late-stage cancer region with 
metastasis capability. Indeed, the upper cancer subregion is also 
detected by CARD to be enriched with fibroblast cells along with 
fibroblast cell marker gene CD248 (Fig. 4c), a cell type known to be 
associated with advanced tumor-node-metastasis stage51.

CARD also localizes many other cell types into specific tissue 
regions, consistent with the expression pattern of the corresponding 
marker genes (Fig. 4b,c, Supplementary Fig. 43 and Supplementary 
Notes). By contrast, none of the other methods capture the expected 
spatial localization of both ductal centroacinar and terminal ductal 
cells. In addition, acinar cells inferred by CARD are mainly enriched 
in the normal pancreatic tissue region; but, they are inferred by the 
other methods to be either absent in the pancreatic region or diffused 
outward from the pancreatic region to the stroma region and cancer 
region. Several cell types inferred by CARD are also colocalized spa-
tially in PDAC (Fig. 4f), such as those between ductal high-hypoxic 
cells and cancer cells and those between endothelial cells and fibro-
blast cells, supporting the role of the former in forming the hypoxic 
and nutrient-poor tumor microenvironment and the role of the lat-
ter in pancreatic cancer stroma interaction of the tumor microen-
vironment52,53. The mean cell-type proportions inferred by CARD 
in the ST data are also highly correlated with those measured in the 
scRNA-seq dataset obtained from the same individual, more so than 
those obtained by the other methods (Fig. 4e).

Next, we examined the robustness of deconvolution by using 
unmatched scRNA-seq datasets (Supplementary Table 2 and 
Supplementary Notes). Despite the platform and sample differences 
in the scRNA-seq references, we found that the estimated cell-type 
compositions for the major cell types are consistent across differ-
ent scRNA-seq references, with the highest consistency achieved by 
CARD (Supplementary Fig. 44). Regardless of which unmatched 
scRNA-seq data were used, CARD showed superior performance 
compared to the other methods in capturing the gross segregation 
of cancer and non-cancer regions, identifying two distinct cancer 
subregions, accurately localizing cell types and revealing a pos-
sible tumor microenvironment supporting tumor progression54–57 
(Supplementary Figs. 45 and 46 and Supplementary Notes).

Finally, we found that the imputed gene expression by CARD is 
highly consistent with the truth across a range of masking percent-
ages (Pearson’s correlation = 0.29–0.52; Fig. 4g and Supplementary 
Fig. 47). Such consistency is higher when the matched scRNA-seq 
data from the same individual is used as the reference than when 
an unmatched scRNA-seq dataset is used (Supplementary Fig. 48).  
The high-resolution spatial map of cell-type composition or gene 
expression obtained by CARD also reveals refined boundar-
ies between different tissue subregions (Supplementary Fig. 49) 

and the spatial expression pattern of marker genes (Fig. 4h and 
Supplementary Fig. 50). Besides marker genes, CARD also discov-
ered multiple genes that display clear spatial expression patterns in 
the refined spatial map but not in the original map (Supplementary 
Fig. 51 and Supplementary Notes). By contrast, the high-resolution 
map of BayesSpace does not show a clear pattern of multiple 
known marker genes (Supplementary Fig. 52) and additional genes 
(Supplementary Fig. 53). Clustering analysis on CARD-imputed 
high-resolution data also revealed clear segregation of the two can-
cer subregions, the normal pancreatic region, and the ductal region, 
more so than the original data or the refined data by BayesSpace 
(Supplementary Fig. 54).

Mouse hippocampus data from multiple sources. We analyzed 
two mouse hippocampus datasets: one directly on hippocampus 
measured using Slide-seqV2 (ref. 58) and the other on a coronal brain 
section containing hippocampus measured using 10x Visium12. 
We used the hippocampus scRNA-seq dataset by Drop-seq23,59 for 
deconvoluting both datasets (Supplementary Table 2). We only 
applied cell2location to the 10x Visium data but not the Slide-seqV2 
data due to its heavy computational burden.

The hippocampus primarily consists of three regions, the cornu 
ammonis 1 (CA1)/CA2 region, the CA3 region and the dentate 
gyrus, all visualizable by total unique molecular identifier (UMI) 
counts per location displayed on the tissue (Fig. 5a). The cell-type 
compositions inferred by CARD accurately depict the three ana-
tomic structures of hippocampus, with the compositional PC1 cap-
turing the curved shape of the hippocampus accurately, more so 
than the other three methods (Fig. 5a and Supplementary Fig. 55).  
The dominant cell type on each location inferred by CARD also 
matches the expectation (Fig. 5b): CA1 cells are highly enriched 
in CA1, CA3 cells mainly localize in CA3, dentate cells reside in 
a C-shaped ring region of the dentate gyrus and ependymal cells 
form an irregular and columnar shape and line the ventricles of the 
brain60, while choroid cells reside right below the ependymal cells 
and locate in the choroid plexus61 along with Cajal–Retzius cells62 
(Supplementary Fig. 56). By contrast, MuSiC is unable to localize 
the main cell types, such as CA1 and CA3 cells, correctly and thus 
is unable to reveal the main structures of the hippocampus (Fig. 5b 
and Supplementary Fig. 57). SPOTlight detects an incorrectly dif-
fused pattern of ependymal cells and incorrectly locates many CA3 
cells to the CA1 region or outside the hippocampus (Fig. 5b and 
Supplementary Fig. 58). RCTD, spatialDWLS and stereoscope per-
form similarly, all locating CA3 cells incorrectly in CA1 (Fig. 5b and 
Supplementary Figs. 59–61), with the CA1 cell marker gene enriched 
in locations dominated by CA3 cells inferred by these methods 
(Supplementary Fig. 62). Additionally, they all allocate different 
cell types to hippocampal structures that appear to be much wider 
than expected13,63(Fig. 5a,b). Careful examination of marker genes 
further confirmed the accuracy of CARD deconvolution (Fig. 5c). 

Fig. 4 | Analyzing the PDAC data. a, H&E staining of the PDAC (left) displays four regions (right) annotated from the original publication47: cancer, pancreatic, 
ductal and stroma regions. b, A spatial scatter pie plot displays inferred cell-type composition on each spatial location from different deconvolution methods. 
Compared deconvolution methods include MuSiC, RCTD, SPOTlight, cell2location, spatialDWLS, stereoscope and CARD; mDCs, myeloid dendritic cells; 
pDCs, plasmacytoid dendritic cells; RBCs, red blood cells; NK cells, natural killer cells. c, Top, the proportion of each of the cell types inferred by CARD is 
displayed on each spatial location. Bottom, the expression levels of corresponding cell-type-specific marker genes are displayed. d, Comparisons of cell-type 
proportions inferred by CARD in cancer regions (n = 137) versus non-cancer regions (n = 289) with a P value tested by a two-sided Wilcoxon rank sum 
test. e, Correlation between mean cell-type proportions inferred by CARD and that in the matched scRNA-seq reference data. f, Correlations in cell-type 
proportion across spatial locations between pairs of cell types inferred by CARD. The color is scaled by the correlation value. g, Accuracy of CARD imputation 
in the masking analysis across ten replicates (n = 10). A fixed percentage of locations are masked as missing (x axis), and CARD is used to impute the gene 
expression on the masked locations. Three different metrics (y axis) are used to evaluate imputation accuracy in terms of the similarity between the imputed 
expression and true expression on masked locations: Pearson’s correlation, Spearman’s correlation and m.s.e. h, CARD imputes gene expression for six marker 
genes on a fine grid set of spatial locations (number of grid points = 500, 1,000 or 2,000), resulting in a refined spatial map of gene expression. Each box plot 
in d and g ranges from the first and third quartiles with the median as the horizontal line, while whiskers represent 1.5 times the interquartile range from the 
lower and upper bounds of the box.
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We quantified the deconvolution performance of different methods 
by examining the expression levels of the marker genes on each of 
the three hippocampal structures inferred based on the estimated 
cell-type composition by different methods. Quantifications again 
supported more accurate deconvolution by CARD than the other 
methods (Fig. 5d, Supplementary Fig. 63 and Supplementary Notes).

We observed that multiple cell types inferred by CARD are colo-
calized together (Supplementary Fig. 64). The highest colocalization 
occurs between Slc17a6/Vglut2 neurons and entorhinal cells, high-
lighting the cell compositional architecture underlying the hippo-
campus–entorhinal cortex network64. The imputed gene expression 
data by CARD are consistent with the truth across a range of mask-
ing percentages (Supplementary Fig. 65). Although the resolution 
of this dataset is already high, the refined spatial map of cell-type 
composition by CARD again reveals refined boundaries between 
different subregions of the hippocampus (Supplementary Fig. 66), 
with the refined gene expression recovering strong spatial pat-
terns for various marker genes (Fig. 5e and Supplementary Fig. 67) 
and additional genes (Supplementary Fig. 68 and Supplementary 
Notes). We examined the reliability of the refined spatial map by 
creating a low-resolution version of the Slide-seqV2 data and then 
applied CARD to construct a refined spatial expression map at 
the original Slide-seqV2 resolution (Supplementary Notes). We 
found that the refined spatial map recovers a consistent and some-
times stronger spatial pattern than the original Slide-seqV2 data 
(Supplementary Figs. 69–72), supporting the accuracy and effec-
tiveness of refined spatial map construction. Here, we were unable 
to apply BayesSpace due to both its heavy computational burden 
and its required input of pixel coordinates that are not available from  
Slide-seq technologies.

Finally, we examined the hippocampus region from the 10x 
Visium data. Again, CARD captures the key structures of the hip-
pocampus (Fig. 5f,g). The estimated cell-type compositions on 
CA1, CA3 and the dentate gyrus from both CARD and MuSiC 
matched the corresponding structures on the H&E image, while 
those from the other methods appear to also occupy regions out-
side the expected structure boundaries (Fig. 5f and Supplementary  
Fig. 73), a pattern confirmed with quantifications (Supplementary 
Figs. 74 and 75).

Extension of CARD for reference-free deconvolution. We further 
developed CARDfree, an extension of CARD for reference-free 
cell-type deconvolution that does not require scRNA-seq reference 
data (Supplementary Notes). CARDfree only requires users to input 
a list of gene names for previously known cell-type markers, which 
determines the dimensionality of the input gene expression matrix. 
Compared to CARD, CARDfree yields generally similar cell-type 
composition estimates in the real data but likely with lower accu-
racy. For example, CARDfree captures the same general tissue 
domain segregation pattern as CARD in both MOB and PDAC 
data, although it was unable to differentiate the two cancer subre-
gions as CARD did (Supplementary Fig. 76). CARDfree does not 
perform as well as CARD with the high-resolution Slide-seqV2 
data and did not identify the CA3 structure based on its estimated 
cell-type proportions, as the Slide-seqV2 data are highly sparse and 

thus could benefit from reference-based deconvolution. However, 
in the hippocampus region of the Slide-seqV2 data, we did notice 
that CARDfree identified a region with a unique cell-type com-
position (Supplementary Fig. 77, CT15 colored in blue) that was 
not found by other deconvolution methods. This region appears to 
part of the entorhinal cortex, which consists of endothelial tip cells 
that are highly related to angiogenesis in mouse brain65. The results 
suggest that reference-free deconvolution may sometimes have  
added benefits.

Discussion
We have presented CARD for accurate and spatially informed 
deconvolution of spatial transcriptomics data. CARD is computa-
tionally efficient: it is 0.8–7,761.8 times faster and uses 0.2–109% of 
the physical memory compared to the other deconvolution meth-
ods (Supplementary Fig. 78 and Supplementary Table 5), and it 
is 5,875–7,028 times faster and uses only 14–17% of the physical 
memory compared to BayesSpace in creating refined spatial maps 
(Supplementary Figs. 79 and 80 and Supplementary Table 6). We 
have demonstrated the benefits of CARD in both simulations and 
applications to four spatial transcriptomics datasets.

We have primarily focused on examining the sequencing-based 
technologies that measure the average gene expression from a 
mixture of cells on each tissue location. Non-sequencing-based 
technologies, such as seqFISH66 and MERFISH67, mostly rely on 
single-molecule fluorescence in situ hybridization (smFISH) and 
are directly of single-cell resolution. However, it remains compu-
tationally challenging to detect the accurate boundaries between 
cells on the smFISH image data, especially when the cell density 
is high68–70. Consequently, the expression data measured on each 
‘single cell’ in smFISH may consist of transcripts from a mixture of 
neighboring cells. Therefore, CARD can also be applied to analyze 
these datasets. In mouse cortex data from seqFISH+38, we found 
that the cell-type compositions inferred by CARD clearly displayed 
a layered structure that resembled the laminar organization of the 
cortex, with each layer harboring a distinct composition of neuronal 
populations (Supplementary Figs. 81 and 82).

We have presented an extension of CARD, CARDfree, for 
reference-free deconvolution. CARDfree requires a postprocess-
ing step to correctly label the inferred cell types. Such postprocess-
ing often requires cell-type-specific gene expression profiles and 
can be challenging to perform accurately. For example, in PDAC, 
CARDfree infers cell-type composition on each location for 20 
inferred cell types. However, it is not trivial to find the name for 
each inferred cell type; for instance, it is not easy to tell whether 
the inferred cell type 14 corresponds to ductal centroacinar cells or 
endothelial cells, as markers for both cell types are enriched in loca-
tions with a high proportion of cell type 14 cells (Supplementary 
Fig. 83). Therefore, new computational algorithms are likely 
needed for labeling cell types inferred from reference-free decon-
volution methods. We also present another extension of CARD 
(Supplementary Notes) to facilitate the construction of single-cell 
resolution spatial transcriptomics from non-single-cell resolution 
spatial transcriptomics (Supplementary Figs. 84–90). Such exten-
sion requires knowing the spatial localization information for all 

Fig. 5 | Analyzing the hippocampus region in Slide-seqV2 and 10x Visium mouse brain (coronal) data. a, The UMI counts of Slide-seqV2 data (right) 
display the structure and shape of hippocampal tissue, highly consistent with the image from Allen Reference Atlas (left); DG, dentate gyrus. b, The 
dominant cell type on each location inferred from four different deconvolution methods. Compared deconvolution methods include MuSiC, RCTD, 
SPOTlight, spatialDWLS, stereoscope and CARD. c, Top, the proportion of each of the cell types inferred by CARD is displayed on each spatial location. 
Bottom, expression levels of corresponding cell-type-specific marker genes. The examined cell types are CA1 cells, CA3 cells and dentate cells. d, Bar 
plots display the comparisons of the mean gene expression level of marker genes in the major regions inferred by different deconvolution methods. 
e, CARD imputes gene expression for three marker genes on a fine grid set of spatial locations, resulting in a refined spatial map of gene expression. 
f, The proportion of each of the cell types on each location inferred by CARD in the 10x Visium dataset. g, The expression levels of corresponding 
cell-type-specific marker genes in the 10x Visium dataset.

Nature Biotechnology | www.nature.com/naturebiotechnology

http://www.nature.com/naturebiotechnology


ArticlesNAtuRe BioteCHnology

single cells on the tissue, which remains challenging to obtain from 
non-single-cell resolution spatial transcriptomics data. Because 
the spatial transcriptomics data itself do not contain information 
for inferring the single cell positions, H&E image segmentation  

is often required to identify single cells on the tissue and extract 
their locations. However, common software is not always accu-
rate in inferring the location for single cells (for example, see 
Supplementary Fig. 91). In addition, aligning H&E images with 
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spatial transcriptomics data can be computationally challenging71. 
Future efforts are needed to address these challenges.

Additional extensions of CARD are possible. First, CARD mod-
els normalized spatial transcriptomics data and could benefit from 
extensions for direct modeling of raw count data using an overdis-
persed Poisson model72,73. Second, we only explored the use of the 
Gaussian kernel74 for modeling spatial correlation. Exploring the 
use of other kernels, such as the periodic kernels74, or incorporat-
ing histological image information, such as image intensity level, as 
additional coordinates6,75, which can be readily done in CARD, may 
capture diverse and rich spatial correlation patterns in the future. 
Third, the spatial imputation feature of CARD facilitates not only 
the construction of a refined spatial map but also the selection of 
scRNA-seq references when multiple scRNA-seq resources are avail-
able. Specifically, we can evaluate through data masking the impu-
tation accuracy resulting from pairing with different scRNA-seq 
references and select the scRNA-seq data with the best imputation 
accuracy for deconvolution. In PDAC, the matched scRNA-seq data 
indeed produced the best imputation performance and would be 
selected as the optimal reference data for deconvolution.
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Methods
CARD method overview. We present an overview of CARD here, with its 
technical details provided in Supplementary Notes. CARD is a deconvolution 
method for spatial transcriptomics studies with regional resolution. These studies 
perform transcriptomic profiling on multiple tissue locations, each of which 
contains multiple single cells. CARD aims to estimate the cell-type composition 
on each tissue location while properly accounting for the spatial correlation 
among them. CARD requires both spatial transcriptomics data and scRNA-seq 
data as input. The scRNA-seq data serve as a reference and consist of K cell types 
with a set of G cell-type-informative genes. Cell types and informative genes in 
scRNA-seq data can be obtained through standard analysis pipelines for clustering 
and informative gene identification76,77. In scRNA-seq, we denote B as the G-by-K 
cell-type-specific expression matrix for the informative genes, where each element 
represents the mean expression level of an informative gene in a specific cell type. 
The expression matrix B is commonly referred to as the reference basis matrix. In 
the spatial transcriptomics data, we denote X as the G-by-N gene expression matrix 
for the same set of informative genes measured on N spatial locations. We denote 
V as the N-by-K cell-type composition matrix, where each row of V represents the 
proportions of the K cell types on each spatial location. Our objective is to estimate 
V given both X from the spatial transcriptomics data and B constructed from the 
scRNA-seq data. To do so, we consider a non-negative matrix factorization model 
to link the three matrices:

X = BVT
+ E, (1)

where each element in V is constrained to be non-negative, and E is a G-by-N 
residual error matrix with each element independently and identically following a 
normal distribution Egi ∼ N(0, σ2

e). A detailed biological interpretation of Eq. (1) 
in the context of deconvolution is provided in Supplementary Notes.

The non-negative matrix factorization model in Eq. (1) has been applied for 
cell-type deconvolution in bulk RNA-seq studies. However, this model is not 
directly applicable for deconvoluting spatial transcriptomics data, as it does not 
account for the spatial correlation structure in the cell-type compositions across 
locations. Intuitively, cell-type compositions on two neighboring locations of a 
tissue are likely to be similar to each other, more so than those on locations that 
are far away. Consequently, the cell-type compositions on neighboring locations 
contain valuable information for inferring the cell-type composition on the 
location of interest. The similarity in cell-type compositions on neighboring 
locations effectively induces spatial correlation among rows of V in the above 
factorization model. Thus, modeling spatial correlation in V is relevant for spatial 
transcriptomics, as it would allow us to borrow cell-type composition information 
across spatial locations to enable accurate estimation of V. To accommodate the 
spatial correlation in V, we specify a CAR39,78,79 modeling assumption on each 
column of V. Specifically, for the column/cell type k, we assume

Vik = bk + ϕ

n∑

j=1,j ̸=i
Wij

(
Vjk − bk

)
+ ϵik, (2)

where Vik represents the proportion of cell type k on the ith location, bk is the 
kth cell-type-specific intercept that represents the average cell-type composition 
across locations, W is an N-by-N non-negative weight matrix with each element 
Wij specifying the weight used for inferring the cell-type composition on the ith 
location based on the cell-type composition information on the jth location, ϕ 
is a spatial autocorrelation parameter that determines the strength of the spatial 
correlation in cell-type composition, and ϵik is the residual error that follows 
a normal distribution ϵik ∼ N(0, σ2

ik). The CAR modeling assumption on V 
effectively expresses the composition of the kth cell type on the ith location, Vik, 
as a weighted summation of the kth cell-type compositions on all other locations, 
Vjk(j ̸= i). Consequently, the CAR modeling assumption on V allows us to borrow 
information across locations to infer the cell-type composition on the location  
of interest.

We follow ref. 74 to express the weight matrix W in the form of a Gaussian 
kernel function constructed based on the Euclidean distance between pairs of 
spatial locations (Supplementary Notes). The Gaussian kernel function has been 
widely used to model a range of correlation patterns that decay over distance across 
tissue locations in many other analytic tasks in spatial transcriptomics80,81. While 
we primarily focus on using a Gaussian kernel for W, our method and software 
can easily incorporate other types of kernels to capture diverse spatial correlation 
patterns encountered in different datasets. With the Gaussian kernel matrix W, 
we further obtain a row-standardized weight matrix W̃  through transformation 
W̃ij = Wij/Wi+, with Wi+ =

n∑

j=1
Wij. Because the weight matrix and the residual 

error variance need to satisfy the symmetric condition82,83, we set σ2
ik = λk/Wi+ 

to ensure W̃ijσ
2
jk = W̃jiσ

2
ik, where λk is a scalar. With the above parameterization, 

we can follow the Brook’s Lemma79,84 to obtain the joint distribution for the N-size 
column vector Vk as

Vk ∼ MVN(bk1N, Σk), (3)

where 1N is an N vector of 1s, Σk =
(

IN − ϕW̃
)−1

Mk is a positive definite 

covariance matrix with Mk = diag
(

σ2
1k, …σ2

Nk
)
, and MVN denotes a multivariate 

normal distribution (Supplementary Notes).
Equations (1) and (3) together define a factor model with a CAR modeling 

assumption on the latent factors to induce spatial correlation across rows of V. 
By modeling the spatial correlation in V, our model allows us to borrow cell-type 
composition information across spatial locations for spatially informed cell-type 
deconvolution. We developed a constrained optimization algorithm in the 
maximum likelihood framework to estimate the cell-type composition matrix V, 
with non-negativity constraints on each of its elements (Supplementary Notes). 
Our algorithm treats the hyperparameters (bk, λk, ϕ and σ2

e) as unknown and 
infers these parameters based on the data at hand to ensure optimal deconvolution 
performance. Our algorithm has several computational advantages that make it 
highly computationally efficient. First, the modeling framework of CARD is in 
essence a linear factor model, expressing the mean gene expression profile in the 
spatial transcriptomics data as a linear function of that from scRNA-seq. The linear 
factor modeling framework streamlines the inference procedure and facilitates 
scalable computation. Second, CARD makes use of the fast multiplicative updating 
rules85,86 for updating the non-negative cell-type composition matrix in each 
optimization iteration. The multiplicative updating rules allow for algorithmic 
optimization without explicit inverse of the spatial covariance matrix, which is 
otherwise required for spatial deconvolution and which incurs heavy computation 
burden (Supplementary Notes). Third, CARD takes advantage of the modern 
computing architecture and explicitly expresses the most computationally intensive 
part of the algorithm in the form of large matrix operations instead of multiple 
scalar operations. For example, it updates each column in the cell-type composition 
matrix at each optimization iteration instead of updating each element in the 
cell-type composition matrix on each spatial location separately. Finally, while 
CARD is implemented in R, its core deconvolution algorithm is implemented with 
an efficient C++ code that is linked back to the main functions of CARD through 
Rcpp, ensuring scalable computation.

Imputation and construction of high-resolution spatial maps for cell-type 
composition and gene expression. A key feature of CARD is its ability to model 
the spatial correlation structure in V. By modeling the spatial correlation in V, 
CARD can predict and impute the cell-type compositions on new, unmeasured 
spatial locations on the tissue. Imputing cell-type compositions on new locations 
would allow us to obtain a refined cell-type composition map of the tissue with 
a spatial resolution much higher than that measured in the original study. To 
enable imputation and construction of a refined cell-type composition map, 
we first outlined the shape of the tissue by applying a two-dimensional concave 
hull algorithm87 on the existing locations. We then created an equally spaced 
grid within the tissue outline and set the number of grid points to exceed the 
number of spatial locations measured in the original study. We denote the 
cell-type composition matrix on the original N spatial locations as V and denote 
the corresponding matrix on the N∗ new locations as V∗. Based on Eq. (3), the 
(N + N∗)-sized cell-type composition vector for the kth cell type, (Vk, V∗

k )
T , 

follows a multivariate normal distribution MVN(bk1N+N∗ , Σ). We partition the 

covariance matrix Σ into 
[

Σoo Σon
Σno Σnn

]

, where o are the indices that correspond to the 

original locations, and n are the indices that correspond to the new locations. We 
can then estimate V∗

k  via its conditional mean

Ṽ∗
k = bk1N∗ + Σno

∑−1

oo
(Vk − bk1N), (4)

where the parameters on the right of the equation are replaced by the 
corresponding estimates. The estimates Ṽ∗

k  on the new locations are almost 
always non-negative, as they are effectively represented as a weighted summation 
of the non-negative cell-type proportions on the original locations. To ensure 
scalable imputation, we used a sparse approximation of the covariance matrix 
Σ by using only the nearest ten neighbors for each location. With the imputed 
cell-type compositions, we can further impute the gene expression levels on the 
new locations by multiplying the above conditional mean in Eq. (4) with the basis 
matrix to obtain B Ṽ∗

k .

Basis matrix construction. We constructed the reference basis matrix B following 
the main ideas of MuSiC using three detailed steps (Supplementary Notes). 
We (1) selected genes that are expressed in both the scRNA-seq reference data 
and the spatial transcriptomic data, (2) selected among them the candidate 
cell-type-informative genes with a mean expression level in a given cell type of at 
least 1.25-log-fold higher than its mean expression level across all remaining cell 
types and (3) removed among them the outlier genes that show high expression 
heterogeneity within a cell type by calculating gene-specific expression dispersion 
(Supplementary Fig. 92). In particular, we calculated the expression dispersion as 
the variance-to-mean ratio for each gene in each cell type. We then obtained the 
gene-specific dispersion by averaging the estimated expression dispersion across 
cell types. We finally removed the top 1% of genes with the largest gene-specific 
dispersion values.
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Simulations and deconvolution analysis evaluation. All simulations are 
described in the Supplementary Notes. In each simulation replicate, we calculated 
the true cell-type proportions on each spatial location as the number of cells in 
each cell type divided by the total number of cells on the location. We denote the 
true cell-type composition matrix as V. After we obtained the estimated cell-type 
composition matrix V̂ , we evaluated deconvolution performance by computing the 
r.m.s.e. between V̂  and V through

r.m.s.e. =
√

1
NK

N∑

i=1

K∑

k=1

(
Vik − V̂ik

)2, where N = 260 is the total number 

of spatial locations, and K is the total number of cell types. Note that the above 
formula for r.m.s.e. calculation is based on all cell types (Supplementary Notes).

Compared methods. We compared CARD with six deconvolution methods:  
(1) MuSiC19 (version 0.1.1), (2) SPOTlight22 (version 0.1.0) and (3) RCTD23 
(version 1.1.0), (4) cell2location29 (version 0.07a), (5) spatialDWLS (implemented 
in the R package Giotto, version 1.0.4) and (6) stereoscope (version 0.2.0). For all 
methods, we followed the tutorial on the corresponding GitHub pages and used the 
recommended default parameter settings for deconvolution analysis. Cell2location 
requires that users input additional parameters. For these parameters, we set 
them to be close to what we used in the simulations and to be close to what we 
best know of in the real data applications. Specifically, in the simulations, we set 
cells_per_spot to be a random number from a uniform distribution U(8, 12) with 
an expected value of 10. We set factors_per_spot and combs_per_spot to be exactly 
the number of cell types available in the corresponding scRNA-seq reference. In 
the real data applications, we set cells_per_spot to be 30 for the mouse olfactory 
spatial transcriptomics data and human PDAC data and set it to be 10 for the 10x 
Visium data. We set both the factors_per_spot and combs_per_spot values to be 7 
following the software tutorial.

We also compared the high-resolution spatial map constructed by CARD 
with a recently developed method BayesSpace (version 1.1.4). Because 
BayesSpace only implements a neighborhood structure suitable for ST and 
10x Visium data, we only evaluated its performance on the mouse olfactory 
spatial transcriptomics data and human PDAC data. We followed the tutorial 
on GitHub and used the recommended default parameter settings for resolution 
enhancement. Specifically, we set the required number of clusters qs based on their 
recommended pseudo-log-likelihood as the following: qs = 5 for mouse olfactory 
spatial transcriptomics data and qs = 8 for PDAC data. Note that BayesSpace 
is restricted in creating a neighborhood structure that has a fixed number of 
subspots at each location in the original data (five for Visium technology and 
nine for ST technology). To compare the high-resolution spatial gene expression 
data constructed by CARD and BayesSpace on the same set of subspots, we 
applied CARD to directly impute gene expression on the subspots generated by 
BayesSpace. Afterward, we performed principal-component analysis dimension 
reduction on the high-resolution data and applied the K-means algorithm analysis 
on the top 20 PCs to cluster spatial locations into 6 clusters for the mouse olfactory 
data and 18 clusters for the PDAC data following the original studies.

Real data analyses. All real datasets used in the present study are described in  
the Supplementary Notes. We first examined cell-type composition similarity 
in these real datasets. Because we did not know the true cell-type composition 
in these data, we used cell-type marker genes as surrogates to examine the 
spatial distribution of cell types on the tissue88. We reasoned that, if the cell-type 
composition is similar among neighboring locations, then we would also expect 
the cell-type marker genes to show spatial correlation in their expression pattern 
on the tissue. Therefore, for each of the three spatial transcriptomics datasets 
examined in the present study, we looked at one marker at a time (from the same 
set of markers in real data applications) and examined its spatial autocorrelation 
pattern by performing spatial autocorrelation tests using Moran I (ref. 89) and 
Geary’s C (ref. 90). Note that we were unable to perform Moran’s I test91  
and Geary’s C test91 on the large Slide-seqV2 dataset due to heavy computational 
cost. Besides examining cell-type marker genes, we also calculated correlation 
in the expression profile of the marker genes between neighboring locations 
(Supplementary Notes). Intuitively, if the cell-type composition is similar between 
neighboring locations, then the expression profile of marker genes will also be 
correlated between neighboring locations more so than between locations that  
are far away.

Next, we applied different methods to deconvolute the above datasets. In 
each analysis, we supplied the same spatial transcriptomics data and the same 
scRNA-seq data as input for all methods (preprocessing details in Supplementary 
Notes). After deconvolution, we followed ref. 92 to assign the dominant cell 
type on each spatial location and examined the distribution of each cell type on 
the tissue. For the two datasets that contain a matched H&E image (MOB and 
PDAC), we compared the distribution of the dominant cell types inferred from 
spatial transcriptomics with the tissue structures annotated based on the H&E 
image. Specifically, we obtained tissue structure annotations based on the H&E 
image, overlayed spatial transcriptomics locations on top the H&E image and 
manually annotated each measured location in spatial transcriptomics with the 
tissue structure annotations extracted from the H&E image. For the MOB dataset, 

we annotated four main structural layers in the olfactory bulb: the GCL (which 
contains n = 67 spatial locations), the MCL (n = 75), the GL (n = 80) and the ONL 
(n = 55). For the PDAC dataset, we annotated four main structural regions on the 
cancer tissue: cancer region (n = 137), ductal region (n = 72), pancreatic region 
(n = 70) and stroma region (n = 147). In the MOB dataset, because each olfactory 
layer is dominated by one cell type, we directly compared the dominant cell type 
inferred from CARD with the layer annotations based on H&E images via ARI 
and purity using the compare function in the igraph R package (v1.0.0) and purity 
function in the funtimes R packages (v8.1), respectively (details in Supplementary 
Notes). In the PDAC dataset, because each tissue region is substantially more 
heterogeneous than in the MOB data and contains potentially multiple cell types, 
using ARI would penalize methods that detected fine tissue regions that were not 
detected in the original study. Therefore, we carefully examined the distribution 
of inferred cell types on each annotated tissue region based on the transcriptomic 
profile and existing biological literature.

Because CARD directly models spatial correlation, CARD can be used to 
impute gene expression on unmeasured locations. To evaluate the accuracy of such 
imputation, we performed location masking analysis. Specifically, in each real data 
application, we randomly masked a fixed percentage of the spatial locations to be 
missing, used the unmasked spatial locations to perform CARD deconvolution, 
relied on the cell-type composition estimates obtained on the unmasked locations 
to predict and impute the cell-type composition on the masked locations and 
further imputed the gene expression levels on the masked locations. We then 
compared the imputed gene expression level with the measured expression level on 
the masked locations using Pearson’s correlation, Spearman’s correlation and m.s.e. 
These serve as indicators on how accurate CARD imputation works, which also 
reflect its deconvolution performance. Importantly, the magnitude of m.s.e. can 
vary substantially across datasets depending on factors such as the sequencing read 
depth per location. In the analysis, we set the mask percentage to be 1%, 2%, 5%, 
10% or 20% for all datasets.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
This study made use of publicly available datasets. These include the MOB dataset 
(http://www.spatialtranscriptomicsresearch.org), human PDAC dataset (https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE111672), mouse hippocampus 
Slide-seqV2 dataset (https://singlecell.broadinstitute.org/single_cell/study/
SCP948/robust-decomposition-of-cell-type-mixtures-in-spatial-transcriptomics) 
and mouse brain (coronal section) 10x Visium dataset (https://www.10xgenomics.
com/resources/datasets/). For the scRNA-seq references used in this study, all are 
publicly available, with details provided in Supplementary Tables 2 and 3.

Code availability
The CARD software package and source code have been deposited at www.xzlab.
org/software.html. All scripts used to reproduce all the analyses are also available at 
the same website.
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