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Accurate genetic prediction of complex traits can facilitate disease screening,
improve early intervention, and aid in the development of personalized medicine.
Genetic prediction of complex traits requires the development of statistical
methods that can properly model polygenic architecture and construct a poly-
genic score (PGS). We present a comprehensive review of 46 methods for PGS
construction. We connect the majority of these methods through a multiple linear
regression framework which can be instrumental for understanding their predic-
tion performance for traits with distinct genetic architectures. We discuss the
practical considerations of PGS analysis as well as challenges and future direc-
tions of PGS method development. We hope our review serves as a useful refer-
ence both for statistical geneticists who develop PGS methods and for data
analysts who perform PGS analysis.

PGS analysis for genetic prediction of complex traits

Complex traits are traits that do not perceivably follow simple Mendelian inheritance laws.
Examples include binary traits such as type 2 diabetes and hypertension as well as continuous
traits such as body mass index and standing height. Complex traits are influenced by multiple ge-
netic factors including genotype, gene expression, epigenomic modifications, and chromatin
structure, as well as multiple environmental factors including occupational, lifestyle, and environ-
mental exposures [1,2]. Among these factors, genotypes, in the form of SNPs (see Glossary),
represent one of the earliest, most stable, and accurately measurable factors underlying complex
traits [3]. In particular, the genotypes of an individual remain the same across somatic cells and
tissues over lifetime, with mutations being extremely rare and often neutral [4]. In addition, the ge-
notypes of an individual can be accurately measured in a cost-effective way through various
array-based and sequencing-based technologies, and can be further imputed across millions
of genomic locations [5-7]. Therefore, genotypes can be used to predict complex traits and re-
construct the genetic predisposition of an individual to a particular disease long before disease
onset [8,9]. Such genetic prediction of complex traits can facilitate disease screening and preven-
tion at a population scale, improve symptom diagnosis and intervention at an early stage, and aid
in the development of precision medicine with individual-based treatment choices [10-13].

Genetic prediction of complex traits is often carried out by PGS analysis. The PGS for a trait, in its
simplest form, is a weighted summation of genotypes across SNPs with the weights being the
estimated genetic effect sizes [10,14-16]. The PGS is commonly referred to as the polygenic
risk score (PRS) or genetic risk score (GRS) when the trait of interest is a binary trait of disease
status [13,16,17]. PGS analysis has become increasingly popular (Figure 1A, Key figure) with
the abundant availability of genotype and phenotype information collected from various
genome-wide association study (GWAS) analyses [15,18,19]. In the past decade, GWAS
analysis has not only successfully identified many SNPs associated with various complex traits
[17,20-22] but also demonstrated that most complex traits have a polygenic [23-25] or
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Highlights

Polygenic score (PGS) analysis aggre-
gates association information from
genome-wide SNPs to enable genetic
prediction of complex traits.

PGS analysis is becoming increasingly
popular with the abundant availability of
genome-wide association studies and
the development of PGS methods.

Different PGS methods model the poly-
genic architecture underlying traits in dif-
ferent ways and often make distinct
modeling assumptions on the effect
size distribution. These modeling as-
sumptions can help to understand the
performance of PGS methods across
traits with distinct genetic architectures.

Recent PGS methods focus on making
use of summary statistics as input,
specify flexible effect size assumptions,
incorporate additional information in-
cluding SNP functional annotations
and pleiotropy association evidence
across multiple traits, perform multi-
ethnic prediction, and rely on computa-
tionally efficient algorithms for scalable
inference.

The development of PGS methods is
closely connected to the development
of methods for SNP heritability estima-
tion, and many common methods are
shared between the two areas. Experi-
ence and lessons learned from SNP
heritability estimation can potentially
benefit methodological developments
for PGS construction.

For some diseases, PGS analysis has
had initial clinical success and can be es-
pecially useful for risk stratification. For
the majority of complex traits, however,
PGS methods have yet to achieve high
prediction accuracy in the general
population.
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omnigenic architecture [26] with an appreciable heritable component. Indeed, many complex
traits are influenced by thousands of small-effect SNPs [27,28], which together can explain a sub-
stantial proportion of the phenotypic variance, a quantity known as SNP heritability [29,30].
Consequently, the prediction of complex traits by using a handful of SNPs that pass the stringent
genome-wide significance level is not optimal [20,31]. Instead, genetic prediction of complex
traits requires PGS methods that can jointly model genome-wide SNPs.

The development of PGS methods has a long-standing history in both animal breeding programs
and human genetics [32]. In animal breeding programs, PGS methods are commonly used for
predicting the breeding values of animals, which are the expected phenotypic values of an indi-
vidual's offspring. There, PGS is referred to as the genomic estimated breeding value (GEBV), and
PGS-based selective breeding is also referred to as genomic selection. Since the seminal paper
of Meuwissen et al. [33], genomic selection has achieved remarkable progress in many animal
programs and has led to substantial increases in many breeding values such as dairy cattle traits
[34]. In human genetics, Wray et al. [35] evaluated the feasibility and accuracy of predicting the
genetic risk of disease by using dense genome-wide SNP panels. Later, the predicted genetic
risk of disease was termed the PRS [24]. For some diseases, PGS methods have had initial clin-
ical success [36,37] and are applied in counseling, prophylactic intervention, and embryonic
screening [38-41]. For the majority of common diseases and quantitative traits, the PGS currently
has a relatively low overall prediction accuracy across individuals in the general population but can
be effective for risk stratification that aims to identify individuals with high disease risk [17,18]. In
addition, PGS analysis has many other applications beyond phenotype prediction. For example,
the PGS for a trait of interest can be treated as a covariate in a phenome-wide association
study (PheWAS) to identify clinical phenotypes and risk factors that are associated with the ge-
netic predisposition of the trait [42,43]. The PGS can also be viewed as the combined effects of
multiple instrumental variables, and is applied in Mendelian randomization analysis to study the
causal relationships between complex traits [42,44]. Importantly, PGS accuracy is expected to
improve along with increasing GWAS sample size, the availability of new genomic information
from omic studies, and the development of advanced PGS methods.

A plethora of PGS methods have already been developed in recent years (Figure 1B-D) [45].
These take advantage of the polygenic architecture underlying complex traits and model it in
different ways. We present here a comprehensive review of 46 PGS methods (Table S1 in the
supplemental information online), with a primary focus on methods that make use of summary
statistics. For completeness and methodological coherence, we have included early individual-
level data-based PGS methods, and we therefore introduce PGS methods in non-
chronological order. In contrast to previous PGS reviews that focused on the practical interpreta-
tion and clinical applications of PGS analysis [11,12,16,17,40], we focus on the methodological
aspect of PGS methods and review them from a statistical perspective. In particular, we connect
the majority of PGS methods through a multiple linear regression modeling framework and show
how different PGS methods can be viewed as making distinct modeling assumptions about the
distribution of SNP effect sizes across the genome. We show that such a modeling framework
can be instrumental for understanding the behavior and prediction accuracy of different PGS
methods for traits with distinct genetic architectures. Based on this framework, we discuss the
practical considerations of PGS analysis as well as current challenges and future directions of
PGS method development.

A multiple linear regression framework
We begin by introducing a simple multiple linear regression model that relates genotypes to the

phenotype of interest. To do so, we define y as a n-vector of the phenotypes measured in n
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individuals by the GWAS. We assume for the present that the phenotype of interest is quantitative,
but we discuss the case of binary phenotypes in a later section. We define X as the n by p matrix of
genotypes collected across p SNPs on the same set of individuals. Genotypes are often coded as
the number of reference alleles for each SNP, and can be represented as continuous values
between 0 and 2 after imputation. To simplify discussion, we assume that the phenotype vector
y and each column of the genotype matrix X have been centered to have a mean of zero. Centering
does not influence the results and allows us to ignore the intercept in the equation. We consider the
following multiple linear regression model that relates X to y:

y=XB+c¢ (1]

where [is a p-vector of SNP effect sizes, ¢is an-vector of residual errors, and each element follows
an independent normal distribution, or ¢ ~ N(O, 2).

Despite its simplicity, the above model is instrumental for understanding almost all existing PGS
methods. In particular, most PGS methods can be viewed as making distinct modeling assump-
tions for the SNP effect size 5in the model and rely on different algorithms to obtain the estimates

[3. The SNP effect size estimates ﬁ subsequently serve as the SNP weights for constructing a
PGS for newly observed individuals (Box 1). Because the model includes genome-wide SNPs
that are in potential linkage disequilibrium (LD) with each other as covariates, the resulting
PGS naturally accounts for SNP LD.

Sparse modeling assumptions for SNP effect sizes

One common modeling assumption for the effect size £ in the multiple linear regression model is
sparsity, and one common sparsity assumption is a point-normal distribution (Box 1). The point-
normal distribution assumes that only a small proportion of SNPs have non-zero effects and that
their effect sizes follow a normal distribution with a mean of zero and a variance of of. PGS
methods that use the point-normal distribution include the Bayesian variable selection regression
(BVSR) [46,47], the Bayesian alphabetic method BayesCr7[48], LDpred [31], and JAMPred [49].
The first two methods use individual-level data from GWAS analysis, whereas the last two use
GWAS summary statistics. These sparse PGS methods also have subtle differences in their as-
sumptions regarding the hyper-parameters as well as their Markov chain Monte Carlo (MCMC)
fitting algorithms.

The point-normal distribution assumes that the effect sizes of the non-zero effect SNPs follow a
normal distribution. The normality assumption for SNP effect sizes is highly effective in many ge-
netic applications including SNP heritability estimation [20,30], and is commonly referred to as the
global shrinkage approach [50]. However, the normality assumption has a potential drawback:
the normal distribution has a thin tail, which corresponds to a relatively low prior probability of ob-
serving large effect sizes. Consequently, normality assumption can lead to over-shrinkage of large
effect estimates that are crucial for accurate prediction. Because of the drawback in the normality
assumption, several PGS methods have been developed to introduce heavy tailed distributions of
the non-zero effects to ensure adaptive shrinkage, also known as local shrinkage [50]. These
methods often assume an SNP-specific non-zero effect size variance sz for the SNP j and
place another prior distribution on 0,-2. The prior on 0,-2 can be either continuous or discrete, effec-
tively leading to a scale-mixture of normal distribution on the non-zero effect sizes. For example,
BayesB [33,48] places an inverse gamma (IG) distribution on 0/2, leading to a point-t distribution
for B. BayesD [48] and BayesD17[48] place a mixture of IG distributions on sz, leading to a point-t
mixture distributions for 3. BayesR [51] places a discrete distribution on (7/-2, leading to a mixture of
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Glossary

Best linear unbiased prediction
(BLUP): this is used in linear mixed
models for estimating and predicting the
random effects. BLUP is a linear function
of the outcome, is an unbiased predictor
of the random effects, and is best in the
sense that the variance of the prediction
error, in the form of the mean squared
difference between the estimated values
and truth, is not greater than that
obtained from any other linear unbiased
predictors. The BLUPs of random
effects are similar to the best linear
unbiased estimates (BLUESs) of fixed
effects.

Breeding values: the expected
phenotypic values of the offspring of an
individual.

Clumping: the procedure of selecting a
subset of SNPs that are approximately
independent of each other.

Effect size: the coefficient of a SNP
genotype for an outcome phenotype of
interest. It is closely related to the
proportion of phenotypic variance that is
explained by the genotype.
Genome-wide association study
(GWAS): an experimental design that
aims to identify SNPs or other genetic
variations associated with traits of
interest based on samples collected
from populations.

Linkage disequilibrium (LD): the
phenomenon that two alleles at different
loci occur together in the same gamete
more often than would be expected by
chance alone. The coefficient of LD is
defined as the difference between the
frequency of gametes carrying the pair of
two alleles at two loci and the product of
the frequencies of those two alleles. For
PGS studies, LD is often calculated as
the correlation between SNP genotypes
using potentially unphased genotype
data.

Phenome-wide association study
(PheWAS): a study that focuses on
identifying phenotypes associated with a
covariate of interest, which is often a
genetic variant or the PGS of another
phenotype.

Restricted maximum likelihood
(REML): a particular form of
maximum likelihood estimation
procedure for linear mixed models
that produces unbiased estimates for
variance and covariance parameters.
It is based on a likelihood function
defined on a restricted subset of
parameters after integrating out the
nuisance parameters.
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Key figure
An overview of polygenic score (PGS) methods
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Box 1. Predicting new observations through PGS construction Risk stratification: the procedure of
We can predict phenotypes for newly observed individuals using the estimated SNP effect size (3 from the model in Equa- systemically oategorizing.indiviQUals into
tion 1 (main text). Specifically, once we have obtained the p-vector of genotypes, x;, for a new individual / we can simply ;ubgrogps baseq on their predlc‘red
plug in the SNP effect estimates to obtain the predicted phenotype value (i.e., the PGS), as §; = x,8. risks, with a special emphasis on
identifying individuals with a particularly
Common modeling assumptions for SNP effect sizes high disease risk for optimized medical

decision making. Risk stratification is
conceptually different from risk
prediction which aims to predict disease
risk for all individuals in a population.
SNP: the most common type of genetic
variation at a single position in the DNA
sequence. A SNP occurs when a single
nucleotide in the genome differs
between individuals or between paired
chromosomes in an individual.

SNP heritability: the proportion of
phenotypic variance in the outcome trait
that is explained by measured SNP
genotypes in a GWAS. Usually only

B ~ N(O, af; ) I additive genetic factors are considered.

Because p >>n, we will need to make additional modeling assumptions for the effect size 3to make the model in Equation 1
(main text) identifiable. Both sparse and polygenic modeling assumptions have been proposed for 5. A common sparse
modeling assumption for 3is the point-normal distribution, which assumes that the effect size of SNP j comes from a mixture
of a normal distribution and a point mass at zero, expressed as:

B; ~ n/\/(o,og) +(1-mdo (]

where, with proportion 77, the SNP effect size follows a normal distribution with mean zero and variance UE, and with a
proportion of 1 — 17 the effect size is exactly zero — hence the point mass at zero, d. In the point-normal distribution, 1™
is usually assumed to be small, representing the prior belief that a small proportion of SNPs have non-zero effects.

A common polygenic modeling assumption for §is the normal assumption, which assumes that all SNPs have non-zero
effects and that each effect size follows a normal distribution:

with mean zero and variance UE. The model in Equation 1 (main text), when paired with the normality assumption for 3in
Equation II, has a wide variety of applications and many names. For example, it is referred to as the linear mixed model
(LMM) per the resulting random effects term of the combined genetic effects; as the infinitesimal model per its polygenic
assumption on the effect sizes X3; as the ridge regression in statistics literature; as the L2 regularization when viewed
as a penalized regression; as the best linear unbiased prediction (BLUP) when the focus is on the predicted values;
or as the REML when the REML algorithm is used for inference. All these names are used interchangeably in the PGS
literature, and we simply refer to the model as the LMM in the present review.

three normal distributions together with a point mass at zero for 5. BayesR is further extended by
SBayesR [52] to take summary statistics as the input. All these methods rely on MCMC for model
inference.

The above PGS methods make explicit sparse modeling assumptions to induce sparsity for effect
size estimates. Several PGS methods that were initially described as an algorithm can also be
viewed as making implicit sparse modeling assumptions. For example, the most commonly
used PGS method, C+T [24,35,53], relies on LD clumping and P value thresholding to select
a subset of approximately independent SNPs with strong association signals for PGS construc-
tion. The C+T strategy ensures that a sparse set of SNPs is used for constructing the PGS, and
thus corresponds to making a sparse assumption for SNP effect sizes. Similarly, SCT [54]
extends C+T by examining an extended set of hyper-parameters for SNP selection. These
hyper-parameters include P value threshold, LD window size, LD correlation threshold, and

Figure 1. (A) The number of PGS publications increased substantially from 2001 to 2020, highlighting the popularity of PGS analysis. The number of publications was
obtained by searching using the key terms 'polygenic + score + or + polygenic + risk + score' on PubMed. (B) Timeline of commonly used PGS methods developed
over the past two decades. These PGS methods either use individual-level genotype and phenotype data as the input (blue) or use summary statistics as the input
(orange). (C) PGS methods can be categorized into six categories based on their model and fitting strategy. Specifically, some PGS methods are model-based and are
described as a formal model with a corresponding fitting algorithm (colors other than red), whereas others are algorithm-based and are described as an algorithm or a
fitting procedure without an explicit model (red). The model-based PGS methods can be further categorized based on the underlying inference algorithm: some are
fully Bayesian and use Markov chain Monte Carlo (MCMC) for model fitting (grey); some are partial/empirical Bayesian that optimize particular hyper-parameters
through grid search while obtaining other parameter estimates through MCMC (light grey); some are approximate approaches that assume independence across
SNPs and use optimization for effect size estimation (yellow); some are frequentist in nature and can obtain an analytic solution without optimization (blue); and some
are based on penalized regression and use iterative algorithms for parameter estimation (purple). (D) PGS methods can also be categorized in terms of the information
used for PGS construction. Most PGS methods use only genotype and phenotype information from the GWAS on the trait of interest (pink). Some recent PGS
methods can use additional SNP annotation information obtained from external data sources (green) and/or other phenotype information in addition to the phenotype
of interest (taupe and navy blue).
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imputation score. PGS values in SCT are constructed for different combination of the hyper-
parameters and are further selected through penalized regression in the validation data.

Polygenic modeling assumptions for SNP effect sizes

An alternative to the sparse modeling assumption for the effect sizes is the polygenic modeling
assumption, and the most common polygenic modeling assumption is normality (Box 1). The
model in Equation 1, when paired with the normality assumption for (3 in Equation Il in Box 1,
has a wide variety of applications and has many names (Box 1). We refer here to the model simply
as the linear mixed model (LMM), which has been implemented in many software. For example,
GEMMA [47] implements LMM for prediction using individual-level data. LDpred-inf [31],
SBLUP [55], and DBSLMM [56] all implement the same model using summary statistics as the
input.

Similarly to sparse modeling, multiple PGS methods have been proposed to extend the normality
assumption in the polygenic models to enable more accurate prediction. For example, BayesA
[25,33,57] places an IG distribution on the SNP specific variance 0/2 to induce a t distribution
for the effect size 5. NEG [58] places an exponential-gamma distribution on a,z to induce a
normal-exponential-gamma distribution for 5. PRS-CS [59] decomposes 072 as a product of
two parameters: a global shrinkage parameter either placed with a half Cauchy prior or optimized
through a grid search, and a local shrinkage parameter with a gamma-gamma prior. Both BayesA
and NEG use individual-level data as the input whereas PRS-CS uses summary statistics. As an-
other popular example, the Bayesian version of Lasso [60] effectively places an exponential dis-
tribution on Uj2 to induce a Laplacian/double exponential prior for 5. The Bayesian Lasso is
fitted through either MCMC [61,62] or the EM algorithm [63] to obtain the posterior mean of .
By contrast, the frequentist Lasso is expressed in the form of an L1 penalized regression and is
often fitted through a gradient descent algorithm to effectively obtain the posterior mode for f.
Although the posterior mean of 3 is not sparse, the posterior mode is. For PGS construction,
the lassosum [64] fits the frequentist Lasso using summary statistics as the input. TlpSum [65] ex-
tends lassosum by selectively penalizing small effect SNPs via the truncated Lasso penalty.

In addition to placing a continuous prior on 0,2, several PGS methods also place a discrete prior
on ajz to effectively induce a mixture of normal distributions for 5. For example, the Bayesian
sparse linear mixed model (BSLMM) [66] assumes that each effect size comes from a mixture
of two normal distributions. By segregating SNPs into two categories, BSLMM can place different
shrinkages on the SNP effect sizes in the two categories separately, leading to proper shrinkage
of small effects without over-shrinkage of large effects. BSLMM is implemented in GEMMA [47],
which takes individual-level data as the input and relies on MCMC for inference. BSLMM is also
implemented in DBSLMM [56], which takes summary statistics and relies on an efficient deter-
ministic algorithm for scalable inference. As another example, BayesC [57,67] places a mixture
of IG distributions on o7, thus inducing a mixture of t distributions for .

The two types of polygenic extensions to normality based on continuous and discrete priors on
ajz have different modeling benefits. Specifically, a continuous prior on ojz often leads to an effect
size distribution that is relatively easy to perform inference on, whereas a discrete distribution on
072 often allows more adaptive shrinkage of the effect sizes and robust prediction performance
across traits. A common feature of both extensions is that they are parametric in nature, relying
on the use of a limited number of parameters to characterize the effect size distribution, which
can be restrictive. To enable more flexible effect size modeling, the latent Dirichlet process regres-
sion (DPR) [68] uses a Bayesian non-parametric model and places a distribution on a,-z, where the
distribution is inferred based on the data at hand. The non-parametric distribution on o7 in DPR
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leads to a normal mixture with infinitely many components of the effect sizes, making DPR robust
and adaptive to a wide range of phenotypes with different genetic architectures. DPR is imple-
mented in the DPR package that uses individual-level data as the input and relies on either
MCMC or variational Bayes for inference. DPR is also implemented in SDPR [69], which takes
summary statistics as the input.

The above PGS methods make explicit polygenic modeling assumptions. A few PGS methods
that were originally described as a fitting algorithm can also be viewed as making implicit poly-
genic modeling assumptions. For example, Mak et al. [70] constructed the PGS by weighting
SNP marginal effect size estimates using local true discovery rates that are estimated through
either maximum likelihood or kernel density estimation. Because the local true discovery rate
ranges between 0 and 1, the Mak et al. method implicitly assumes that all SNPs are included
for PGS construction. So and Sham [7 1] extend the approach of Mak et al. by applying a Tweedie
formula [72] to further correct for the SNP effect size estimates before weighting.

Modeling assumptions and other factors that influence performance

Given that the majority of PGS methods make distinct modeling assumptions about the effect sizes,
one naturally wonders which PGS method to choose for a given trait. Intuitively, if the prior effect size
distribution closely matches the true effect size distribution underlying the trait, then the inferred effect
size estimates would approximate well the underlying polygenic architecture, thus leading to accu-
rate prediction performance. Indeed, it has been shown that polygenic PGS methods often perform
well for polygenic traits [24,66,73,74], whereas sparse PGS methods often perform well for traits in
which a small proportion of SNPs have moderate or large effect sizes [26,59,66]. Because the ge-
netic architecture underlying a trait is often unknown and varies across traits [75], it is often beneficial
to use a PGS method with a flexible modeling assumption that can adaptively approximate the true
effect size distribution across a range of traits. For example, methods that rely on a mixture of normal
distributions (e.g., BSLMM, BayesR, DPR) for adaptive modeling of effect sizes often outperform
standard LMM that assumes a single normal distribution.

Certainly, how well the effect size assumption matches the underlying truth is only one modeling
factor, albeit a major one, that determines prediction performance. Other modeling factors, such
as the choice of inference algorithms and the inference strategies regarding the hyper-
parameters, can also substantially impact on prediction performance. Specifically, given the
same model and sufficient computational resources, exact inference algorithms often outperform
approximate ones. For example, the MCMC algorithm for DPR outperforms the variational Bayes-
ian approximation of DPR across traits. However, with limited computational resources, an ap-
proximate inference algorithm may become the only viable option. For example, DBSLMM
relies on an approximate deterministic algorithm to perform inference on BSLMM, and is much
more scalable than the original MCMC algorithm for fitting BSLMM. In addition, it is generally ben-
eficial to infer various hyper-parameters in the model rather than fixing them to certain pre-
assigned values. For example, whereas both BVSR and BayesCrr fit a similar sparse model,
BVSR often outperforms BayesC 7 by inferring the hyper-parameters instead of fixing them to a
prior set of values. The ability to use a large number of parameters and explore a large parameter
space can also help with prediction performance. For example, SCT outperforms C+T by
performing SNP selection with additional criteria and exploring a larger hyper-parameter space.
Fitting algorithms that use individual-level data as the input usually have higher prediction perfor-
mance than algorithms that take summary statistics because the latter must approximate the LD
matrix (more below). However, owing to LD matrix approximation, algorithms using summary sta-
tistics are often much more computationally scalable than those using individual-level data. In ad-
dition to the above modeling factors, PGS performance also depends on the quality of the input
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data [45], the GWAS sample size, and trait SNP heritability [76,77], which represents the potential
performance upper limit for PGS [78].

Finally, multiple factors also influence the computational cost of different PGS methods. For exam-
ple, PGS methods based on global shrinkage of LMM are often faster than PGS methods with local
shrinkage or sparsity inducing priors because the former can be fitted based on an analytic solu-
tion. For the same model, approximate inference algorithms are computationally faster and use
less memory than exact inference algorithms. At the extreme, algorithm-based PGS methods
suchas CT and SCT are generally more computationally scalable than model-based PGS methods
that specify explicit effect size priors and perform formal inference. In addition, PGS methods that
rely on summary statistics as the input make explicit approximations for the LD matrix, which can
alleviate much of the computational burden associated with modeling of SNP correlation. Software
implementation, the use of multithreading or parallel computing environment, and the choice of
computational language can also influence the computational cost of PGS methods.

Adaptation of PGS methods towards using summary statistics

Whereas early PGS methods use individual-level genotype and phenotype as inputs, a growing
number of PGS methods can make use of summary statistics or are specifically designed to
do so. Fitting with summary statistics requires LD approximation, which can lead to reduced ac-
curacy as compared to fitting with individual-level data using the same model [79]. However,
fitting with summary statistics can take advantage of the easily accessible summary statistics
from various GWAS analyses without privacy concerns and logistic hurdles [18,19], and can
lead to substantial computational gains through LD approximation. Therefore, summary
statistics-based PGS methods facilitate PGS applications towards large-scale data, which is cru-
cial for ensuring accurate prediction performance.

There are two general strategies for fitting PGS models using summary statistics, with subtle
methodological differences between them. The first strategy is to formulate the model with
individual-level data and derive the inference algorithm using summary statistics, whereas the
second strategy is to model summary statistics directly (Box 2). Both strategies require two

Box 2. Modeling summary statistics

There are two general strategies for fitting PGS models using summary statistics. The first is to formulate the model with
individual-level data and derive the inference algorithm using summary statistics. Specifically, the likelihood for the model in
Equation 1 (main text) can be expressed as a function oftwo terms: X’y and X"X. Subsequently, instead of using individual-level
data X and y as inputs for modeling fitting, one only needs to obtain these two forms of summary statistics. X'y can be obtained
through the p-vector of marginal z-scores which is equivalent to the marginal effect size estimates B when both the phenotype
and the genotypes for each SNP are standardized to have mean zero and unit standard deviation. In that case, the z-scores are
inthe form of z = ’% when SNP effect sizes are small, where N is the GWAS sample size. XX for the standardized genotype
matrix can be obtained through a p by p SNP correlation matrix D = ’% which is also referred to as the LD matrix. With zand
D as inputs, likelihood-based inference can be carried out as if individual-level data are available.

The second strategy for fitting PGS models with summary statistics is to model summary statistics directly. For example,
regression with summary statistics (RSS) models the marginal effect size estimate B8 as a function of the underlying effect
size (3 in the form:

B|B ~ N(DB.oZD) U

where D = ’% which is also referred to as the LD matrix, and o is the same error variance as in Equation 1 (main text).
The conditional likelihood of 5 given the hyper-parameters (e.g., 02) based on Equation | is the same as the conditional like-
lihood of 3 based on Equation 1 (main text). Therefore, if the hyper-parameters are known, both strategies for fitting PGS
models with summary statistics lead to the same likelihood for 3. The likelihood for the hyper-parameters based on
Equation |, however, is different from that based on Equation 1 (main text). Note that a more complex form of RSS is avail-
able [80] when the SNP genotypes are not standardized.
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forms of summary statistics as the input: the p-vector of marginal z-scores and the p by p SNP
correlation matrix D, which is also known as the LD matrix. The input z can be easily obtained
through simple linear regression in the original GWAS whereas the input D is often estimated
from a reference panel of individuals of the same ethnicity (e.g., from the 1000 Genomes Project).
Because of the relatively small sample size in the reference panel, the estimated D requires further
regularization and approximation to ensure numerical stability for PGS inference. Some PGS
methods approximate D with a block-diagonal matrix computed either based on LD
[31,56,59,64] or through index-sorting [69], sometimes further adjusted for cross-block
correlations caused by long-range LD [49]; some approximate D with a banded matrix based
on a sliding window for LD computation [31,55]; some shrink D towards a diagonal matrix with
D = AD + (15, — N, where each element A; in A is a function of recombination rate between
SNPs jand j [52,80]; and some approximate D with a sparse matrix by setting small matrix ele-
ments to zero [81]. Regardless of the form of the estimation, a match between the estimated D
from the reference panel and the true D in the study sample is crucial to ensure accurate predic-
tion performance [56,82,83].

Incorporating additional information to improve prediction

Several recent PGS methods have been developed to incorporate additional and external infor-
mation beyond what is available in the GWAS data. Such external information can be either in
the form of SNP functional annotations or in the form of other phenotypes in addition to the phe-
notype of interest. Incorporating external information often improves the accuracy of PGS.

Incorporating SNP functional annotations

Functional annotations for a given SNP are continuous or binary annotations that characterize the
functional importance of the genetic variant [84-86]. SNP functional annotations are obtained
through functional genomic studies [87-91] and can serve as crucial predictors for SNP effects.
For example, SNPs with particular functional annotations are more likely to be causal [92], tend to
have larger effect sizes, and explain more heritability than SNPs with other annotations [93,94].
Several PGS methods have been developed to incorporate SNP functional annotations to im-
prove prediction. For example, 2D PRS [95] categorizes SNPs into two disjoint sets: one contain-
ing high-priority SNPs that are likely to be associated with the trait of interest, and the other
containing low-priority SNPs that are less likely to be associated with the trait. The two sets of
SNPs are determined based on a separate GWAS and are then subject to the C+T procedure
separately with a less stringent P value threshold for the high-priority SNPs. MultiBLUP [96] di-
vides SNPs into separate groups based on their genomic location and induces different effect
size shrinkage in different groups. AnnoPred [97] incorporates SNP functional annotations di-
rectly into the prior distribution of effect sizes based on BVSR: it either models the probability
that the SNP j has a non-zero effect as a function of its annotations, or models its non-zero effect
variance as a function of its annotations. LDpred-funct [98] builds upon LMM and models 0,-2 asa
function of its annotations.

Modeling pleiotropy across multiple traits

Another type of external information that can facilitate trait prediction is pleiotropic association in-
formation. Pleiotropic association characterizes SNP effect similarity across multiple correlated
traits and can be used to improve SNP effect size estimation for the trait of interest [99-101].
PGS methods that take advantage of pleiotropy are often based on the multivariate linear
mixed model (MvLMM) [102,103], also known as the MT-BLUP in prediction settings. The
mvLMM is an extension of LMM and assumes that the effects of SNP j across phenotypes follow
a multivariate normal distribution, and use a covariance matrix to capture the genetic covariance
across traits. By jointly modeling SNP effect size similarity across traits, mvLMM can borrow
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information of effect size estimates from other traits to improve the estimates for the trait of inter-
est. Li et al. [104] implement a bivariate version of mvLMM that models two phenotypes jointly.
MTGBLUP [100] implemented a general form of mvLMM with individual-level data as input.
wMT-SBLUP [99] implements mvLMM with summary statistics as the input. In addition to
mvLMM, CTPR [105] imposes a sparse effect size assumption on each trait and uses an L2 pen-
alty to model effect size similarity across traits. Other methods also incorporate SNP functional
annotations into pleiotropic modeling. For example, PleioPred [101] partitions SNPs into multiple
annotation categories while jointly modeling two correlated traits together. PANPRS [106] spec-
ifies an annotation specific L1 penalty for SNPs in each annotation category to incorporate anno-
tation into prediction, and uses a group Lasso-type penalty to encourage SNP effect size
similarity across traits.

Moving beyond multiple linear regression

Although the multiple linear regression framework in Equation 1 includes the majority of PGS
methods, there are several notable exceptions. For example, the non-parametric shrinkage
(NPS) method [81] performs a linear transformation of the SNP genotypes before placing a
non-parametric effect size distribution on the transformed genotypes. Subsequently, the resulting
prior distribution of the original genotypes from NPS is not straightforward to characterize and
does not directly correspond to a known distribution. As another example, deep-learning
methods [107,108] rely on deep convolutional neural networks connected through the leaky rec-
tified linear unit (ReLU) activation functions for modeling non-linear effects, which can be particu-
larly effective for predicting traits with appreciable genetic heterogeneity [107]. However, the
performance of deep-learning methods is heavily dependent on the availability of large-scale
training data, the choice of network architecture, and tuning of hyper-parameters; the latter two
require expertise and extensive trial and error owing to the lack of a standard theory to guide ar-
chitecture selection and model training. For case—control studies, the binary case-control labels
are often treated as continuous traits and directly modeled through the multiple linear regression
framework [66,68]. Such modeling could be justified by recognizing the linear model as a first-
order Taylor approximation to a generalized linear model [66,68]. However, several recent PGS
methods use either a logistic regression [106], its approximation [109], or a liability threshold
model [66] to directly model ascertainment and the binary nature of the case—control outcome.
Finally, recent studies have started to explore the development of PGS methods to predict the ab-
solute risk that an individual develops a disease over a given period of time by using the Cox pro-
portional hazard model [110]. Validating such absolute risk models in prospective studies will be
of particular clinical importance [40].

Evaluating PGS methods: cross-validation and cross-ethnicity performance

Fitting and evaluating PGS methods rely on a multistage procedure commonly referred to as
cross-validation (Figure 2). Cross-validation requires two or three datasets: training data, optional
validation data, and test data. PGS methods are fitted to the training data; if needed, their hyper-
parameters are determined from the validation data (Table S1 in the supplemental information on-
line); and eventually their performance is evaluated using the test data. The relative sizes of the
training versus test data represent a bias—variance trade-off in estimating the prediction error.
In particular, a small training dataset and a large test dataset would likely lead to an over-
estimate of the prediction error. A large training dataset and a small test dataset, by contrast,
would result in less bias but higher variance in estimating the prediction error. In addition,
methods that perform automatic inference for all parameters using the training data alone can
potentially combine the validation data with the training data to benefit from the larger sample
size. By contrast, methods that tune hyper-parameters in a separate validation dataset are
often computationally easier to fit, and require estimation of the SNP effect sizes conditional on
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Figure 2. A general pipeline for polygenic score (PGS) construction and applications. PGS methods require either
two or three datasets as the input: training data, test data, and (if necessary) validation data. These datasets need to undergo
multiple steps of stringent quality control that include SNP filtering, overlap sample removal, adjustment of population
stratification, etc. The training data are then used to fit the desired PGS model for estimating the SNP effect sizes. For
some PGS methods, validation data are necessary to tune parameters in the model or perform model selection. The
estimated SNP effect sizes are then used to construct PGS values from the test data, where the predictive performance of
the PGS method is tested based on standard metrics. The constructed PGS values are used for different applications,
including risk stratification, phenome-wide association study (PheWAS), and Mendelian randomization. A dotted line box
represents a step that is not necessary for all PGS methods. Abbreviations: AUC, area under the curve; LD, linkage
disequilibrium; MSE, mean squared error; OR, odds ratio; PheWAS, phenome-wide association study; QC, quality control;
s.e., standard error.

the hyper-parameters in the training data instead of jointly estimating both, although their perfor-
mance may also be influenced by the size of the validation data. In cross-validation, the evaluation
metrics in the test data include R? and mean squared error (MSE) for quantitative traits, and area
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under the curve (AUC) and pseudo-R? for binary traits. Among these metrics, AUC and R? are
easier to interpret because both range between zero and one, but neither accounts for the pre-
dicted trait mean as MSE does, and thus may not be suited for settings where predicting the
absolute trait value is of interest. Importantly, tuning of hyper-parameters in the validation data
may only require summary statistics, as does computing R? [56,65,99] or AUC [111] in the test
data. Using summary statistics for hyper-parameter tuning and R? computation facilitates the ap-
plication of PGS methods to a wide variety of datasets [56]. Finally, we note that one unfortunate
mistake that practitioners commonly make in the cross-validation procedure is to use the test
data instead of a separate validation dataset to tune the hyper-parameters. Using the same
test data to both tune hyper-parameters and evaluate PGS performance would lead to model
over-fitting, resulting in underestimation of the prediction error.

Most cross-validations have thus far been performed on a single GWAS of samples of European
ancestry [112]. Several recent studies have explored PGS evaluation either through cross-study
validation where the training and test data are from two separate GWASSs, or through cross-
ethnic group validation where the training and test data are from two GWASs with samples of dif-
ferent ethnicity [56]. Cross-study and cross-ethnicity PGS applications are challenging because
of the potential mismatch in allele frequency and LD pattern between the training and test data
[81]. Indeed, models trained with European individuals are often two- to threefold less accurate
when applied to Asian or African populations as compared to European populations
[66,113,114]. Consequently, special PGS methods have been developed to enhance cross-
ethnicity prediction. For example, a weighted multi-ethnic PGS is proposed to combine PGS
trained in Europeans and non-Europeans to improve prediction in both populations [115].
PolyPred and PolyPred+ [116] rely on functionally informed fine-mapping in different populations
to improve causal effect estimation and subsequent cross-ethnicity prediction accuracy. PRS-
CSx [117], an extension of PRS-CS, directly assumes shared causal effects and borrows infor-
mation across populations for accurate effect size estimation. With methodological advances
and increased availability of GWASSs in under-represented populations [112,114], PGS accuracy
in diverse populations will be further improved.

Concluding remarks

We summarize the discussed PGS methods in a reference guide to facilitate practical applica-
tions (Figure 3). The performance of different PGS methods has been evaluated in multiple
human traits in both PGS method studies (Figure 4 and Figure S1 in the supplemental information
online) and method comparison studies [83,118,119]. These studies have shown that C+T is the
most commonly compared method owing to its simplicity and computational efficiency, whereas
PRS-CS and BSLMM tend to have higher performance than the others whenever they are com-
pared, presumably because of their flexible modeling assumptions. However, these studies have
also shown that different PGS methods have distinct performance across traits and that the same
method may have different performance on the same trait in different studies owing to varying
cross-validation designs. Therefore, comprehensive comparisons will be necessary to systemat-
ically evaluate the performance of various PGS methods in the future.

We note that the development of PGS methods is closely connected to the development of
methods for SNP heritability estimation, and many common methods are shared between the
two areas [30]. For example, the sparse PGS methods BVSR [46] and BayesR [51], as well as
the polygenic PGS methods LMM [20], BSLMM [66], and DPR [68], are all commonly used for
SNP heritability estimation. Among them, LMM is perhaps the most widely applied [20], and
has multiple software implementations [47,120] and multiple available fitting algorithms including
restricted maximum likelihood (REML) and the method of moments for SNP heritability
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Outstanding questions

What is the best approach to borrow
information across multiple ethnic
groups to improve the portability of
the PGS across different ethnicities
while maintaining its accuracy in spe-
cific ethnic groups?

What is the best way to approximate
the LD matrix such that we can main-
tain the accuracy of individual-level
based PGS methods while keeping
the computation benefits from sum-
mary statistics-based PGS methods?

Would modeling the SNP effect size
dependence on the minor allele fre-
quency and LD help to improve PGS
accuracy?

Can we incorporate other integrative
approaches recently developed in
various omic studies into PGS modeling
to improve prediction performance?

Would selecting informative functional
annotations and/or selecting correlated
traits from a large group of candidates
help to further improve PGS perfor-
mance for the trait of interest?

Can we measure prediction uncertainty
through the predictive posterior
distribution in a computationally efficient
fashion, and can we quantify the
calibration of such prediction uncertainty
through posterior predictive checks?

How do we extend the current PGS
methods to predict the absolute risk
that a person develops a disease over
a given period of time?

How do we appropriately communicate
PGS results, especially their relatively
low accuracy in the general population,
to patients and consumers who ob-
tained their PGS through clinical and
laboratory tests?
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Figure 3. A decision tree for which methods to use for polygenic score (PGS) analysis. The decision tree begins
with input data type, followed by the choice of analyzing single versus multiple traits, using model-based methods versus
algorithm-based methods, whether to incorporate information beyond genotype and phenotype, as well as the detailed
SNP effect size assumptions (blue brackets). The choices include Yes/No answers (Yes in green circles and No in purple
circles) or other qualitative options (orange brackets). Different choices lead to different PGS methods (grey brackets)
which are implemented with different computing languages (pink brackets).

estimation [121]. In addition to analyzing a single quantitative trait, LMM has also been extended
to SNP heritability estimation for binary [66,122,123] and count [124—126] traits, as well as for ge-
netic and environmental covariance estimation across multiple phenotypes [103,127]. With the
same model, PGS methods focus on estimating SNP effect sizes, whereas heritability estimation
methods focus on estimating a variance component hyper-parameter that represents SNP her-
itability. The estimated SNP heritability depicts a potential upper limit of PGS performance and
serves as an initial input for many PGS methods [56]. As with PGS methods, the accuracy of
SNP heritability estimation is highly dependent on how well the prior effect size distribution
matches the truth [66]. Indeed, a similar trend in SNP heritability estimation is to develop methods
with flexible SNP effect size distributional assumptions, often by incorporating SNP annotations
or by modeling the SNP effect size dependence from the minor allele frequency (MAF) and LD
score [121,128]. For example, LDAK assumes that the variance of SNP effect size is a function
of MAF and LD, whereas genome-based restricted maximum likelihood (GREML)-MS [129]
and stratified LDSC [128] induce such dependence by stratifying SNPs into different MAF and
LD bins and assuming different per-SNP heritability values in different strata. Finally, several
SNP heritability estimation methods have been developed to take GWAS summary statistics as
the input. These summary statistics-based methods include LDSC [130] and MQS [121] algo-
rithms for LMM, and the SumHer algorithm [131] for LDAK, all of which rely on the method of mo-
ments to achieve scalable computation. A recent review on SNP heritability estimation from a
statistical perspective is available [30]. Taking advantage of the methods developed for SNP her-
itability estimation, and incorporating the lessons and experiences gained in that research area,
can potentially benefit the development of PGS methods.
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Figure 4. Predictive performance of common polygenic score (PGS) methods as revealed in the PGS
methodological publications. (A) The bar plot shows the top five PGS methods that have been most compared in real
data applications in the 26 PGS methodological publications listed in Figure S1 in the supplemental information online. The
y axis denotes the number of times a specific PGS method is compared in a different PGS methodological publication.
Note that PGS methods developed earlier tend to be compared more often than methods developed later. (B) The bar
plot shows the percentage of times a PGS method is ranked among the top two methods in terms of prediction
performance in human traits in the PGS methodological publications. The percentage is calculated both across
publications and across traits examined in all PGS methodological publications listed in Figure S1 in the supplemental
information online. In both (A) and (B) we only considered PGS methods that have been compared at least once in a PGS
methodological publication from a different research group.

Although existing PGS methods have shown promising performance across many complex
traits, many future improvements are warranted (see Outstanding questions). For example,
annotation-facilitated PGS methods have so far focused on a limited number and types of anno-
tations. Evaluating a large variety of annotations and exploring the benefits of annotation selection
[132] may improve prediction further. Incorporating other types of external information such as
transcriptomics through other integrative analysis frameworks such as the transcriptome-wide
association study may have added benefits. Combining PGS scores from different methods
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and across multiple GWAS sources and distinct populations, in a principled way, such as through
bagging or boosting, may ensure robust prediction performance. Incorporating rare genetic var-
iants, especially those with high penetrance, modeling allele frequency and LD-dependent effect
size distributions, and accounting for gene—-gene interactions and gene—environment interac-
tions, may all improve prediction. Finally, recent studies have suggested that some fraction of
the constructed PGS from particular PGS methods may be correlated with and accounted for
by non-genetic risk factors [133]. Thus, investigating the benefits of including the constructed
PGS on top of the existing non-genetic risk factors used in the baseline risk model for individual
disease or all-cause mortality is especially important for assessing the practical performance of
PGS methods and the clinical impact of PGS [133,134].
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