
Figure S1. Popularity of different DR methods as measured by their use in 

existing scRNAseq cell clustering tools or lineage inference tools. We 

counted the number of DR methods that are used in each of the 32 scRNAseq 

cell clustering methods (A) or in each of the 46 scRNAseq lineage inference 

methods (B). We used geom_treemap functions in R package to draw both 

panels, where the font size of each DR method represents its popularity, which is 

measured by the frequency of DR method used in these scRNAseq tools.  



Figure S2. DR method performance evaluated by Jaccard index on cell clustering 

data sets with 10 neighborhood cells. We compared 18 DR methods (columns), 

including factor analysis (FA), principal component analysis (PCA), independent 

component analysis (ICA), Diffusion Map, nonnegative matrix factorization (NMF), 

Poisson NMF, zero-inflated factor analysis (ZIFA), zero-inflated negative binomial based 

wanted variation extraction (ZINB-WaVE), probabilistic count matrix factorization (pCMF), 

deep count autoencoder network (DCA), scScope, generalized linear model principal 

component analysis (GLMPCA), multidimensional scaling (MDS), locally linear 

embedding (LLE), local tangent space alignment (LTSA), Isomap, uniform manifold 

approximation and projection (UMAP), and t-distributed stochastic neighbor embedding 

(tSNE). We evaluated their performance on 14 real scRNAseq data sets (UMI-based 

data are colored as blue while non-UMI based data are colored as purple) and 2 

simulated data sets (rows). The simulated data based on Kumar data is labeled with #. 

We used log2 count transformation for the subset of DR methods that use normalized 

data. For each data set, we compared the four different number of low-dimensional data. 

The four numbers we used equal to 0.5%, 1%, 2%, and 3% of the total number of cells 

in big data and equal to 2, 6, 14, and 20 in small data (which are labeled with *). No 

results for ICA are shown in the Pancreatic data (grey fills) because ICA cannot handle 

the large number of features in the data. Note that, for tSNE, we only extracted two low-

dimensional components due to the limitation of the tSNE software. 

 



Figure S3. Bar plots show the average Jaccard index of different DR 

methods with 10 neighborhood cells based on cell clustering data. The 

performance is measured by average Jaccard index across 16 data sets. We compared 

18 DR methods, including factor analysis (FA; light green), principal component analysis 

(PCA; light blue), independent component analysis (ICA; blue), Diffusion Map (pink), 

nonnegative matrix factorization (NMF; green), Poisson NMF(light orange), zero-inflated 

factor analysis (ZIFA; light pink), zero-inflated negative binomial based wanted variation 

extraction (ZINB-WaVE; orange), probabilistic count matrix factorization (pCMF; light 

purple), deep count autoencoder network (DCA; yellow), scScope (purple), generalized 

linear model principal component analysis (GLMPCA; red), multidimensional scaling 

(MDS; cyan), locally linear embedding (LLE; blue green), local tangent space alignment 

(LTSA; teal blue), Isomap (grey), uniform manifold approximation and projection (UMAP; 

brown), and t-distributed stochastic neighbor embedding (tSNE; dark red). We used log2 

count transformation for the subset of DR methods that use normalized data. For each 

data set, we compared the four different number of low-dimensional data. The four 

numbers we used equal to 0.5%, 1%, 2%, and 3% of the total number of cells in big data 

and equal to 2, 6, 14, and 20 in small data. For convenience, we only listed 0.5%, 1%, 

2%, and 3% on x-axis. Note that, for tSNE, we only extracted two low-dimensional 

components due to the limitation of the tSNE software. 



Figure S4. DR method performance evaluated by Jaccard index on cell clustering 

data sets with 20 neighborhood cells. We compared 18 DR methods (columns), 

including factor analysis (FA), principal component analysis (PCA), independent 

component analysis (ICA), Diffusion Map, nonnegative matrix factorization (NMF), 

Poisson NMF, zero-inflated factor analysis (ZIFA), zero-inflated negative binomial based 

wanted variation extraction (ZINB-WaVE), probabilistic count matrix factorization (pCMF), 

deep count autoencoder network (DCA), scScope, generalized linear model principal 

component analysis (GLMPCA), multidimensional scaling (MDS), locally linear 

embedding (LLE), local tangent space alignment (LTSA), Isomap, uniform manifold 

approximation and projection (UMAP), and t-distributed stochastic neighbor embedding 

(tSNE). We evaluated their performance on 14 real scRNAseq data sets (UMI-based 

data are colored as blue while non-UMI based data are colored as purple) and 2 

simulated data sets (rows). The simulated data based on Kumar data is labeled with #. 

We used log2 count transformation for the subset of DR methods that use normalized 

data. For each data set, we compared the four different number of low-dimensional data. 

The four numbers we used equal to 0.5%, 1%, 2%, and 3% of the total number of cells 

in big data and equal to 2, 6, 14, and 20 in small data (which are labeled with *). No 

results for ICA are shown in the Pancreatic data (grey fills) because ICA cannot handle 

the large number of features in the data. Note that, for tSNE, we only extracted two low-

dimensional components due to the limitation of the tSNE software. 

 



Figure S5. Bar plots show the average Jaccard index of different DR 

methods with 20 neighborhood cells based on cell clustering data. The 

performance is measured by average Jaccard index across 16 data sets. We compared 

18 DR methods, including factor analysis (FA; light green), principal component analysis 

(PCA; light blue), independent component analysis (ICA; blue), Diffusion Map (pink), 

nonnegative matrix factorization (NMF; green), Poisson NMF(light orange), zero-inflated 

factor analysis (ZIFA; light pink), zero-inflated negative binomial based wanted variation 

extraction (ZINB-WaVE; orange), probabilistic count matrix factorization (pCMF; light 

purple), deep count autoencoder network (DCA; yellow), scScope (purple), generalized 

linear model principal component analysis (GLMPCA; red), multidimensional scaling 

(MDS; cyan), locally linear embedding (LLE; blue green), local tangent space alignment 

(LTSA; teal blue), Isomap (grey), uniform manifold approximation and projection (UMAP; 

brown), and t-distributed stochastic neighbor embedding (tSNE; dark red). We used log2 

count transformation for the subset of DR methods that use normalized data. For each 

data set, we compared the four different number of low-dimensional data. The four 

numbers we used equal to 0.5%, 1%, 2%, and 3% of the total number of cells in big data 

and equal to 2, 6, 14, and 20 in small data. For convenience, we only listed 0.5%, 1%, 

2%, and 3% on x-axis. Note that, for tSNE, we only extracted two low-dimensional 

components due to the limitation of the tSNE software. 



Figure S6. DR method performance evaluated by Jaccard index on cell clustering 

data sets with 30 neighborhood cells. We compared 18 DR methods (columns), 

including factor analysis (FA), principal component analysis (PCA), independent 

component analysis (ICA), Diffusion Map, nonnegative matrix factorization (NMF), 

Poisson NMF, zero-inflated factor analysis (ZIFA), zero-inflated negative binomial based 

wanted variation extraction (ZINB-WaVE), probabilistic count matrix factorization (pCMF), 

deep count autoencoder network (DCA), scScope, generalized linear model principal 

component analysis (GLMPCA), multidimensional scaling (MDS), locally linear 

embedding (LLE), local tangent space alignment (LTSA), Isomap, uniform manifold 

approximation and projection (UMAP), and t-distributed stochastic neighbor embedding 

(tSNE). We evaluated their performance on 14 real scRNAseq data sets (UMI-based 

data are colored as blue while non-UMI based data are colored as purple) and 2 

simulated data sets (rows). The simulated data based on Kumar data is labeled with #. 

We used log2 count transformation for the subset of DR methods that use normalized 

data. For each data set, we compared the four different number of low-dimensional data. 

The four numbers we used equal to 0.5%, 1%, 2%, and 3% of the total number of cells 

in big data and equal to 2, 6, 14, and 20 in small data (which are labeled with *). No 

results for ICA are shown in the Pancreatic data (grey fills) because ICA cannot handle 

the large number of features in the data. Note that, for tSNE, we only extracted two low-

dimensional components due to the limitation of the tSNE software. 

 



Figure S7. Bar plots show the average Jaccard index of different DR 

methods with 30 neighborhood cells based on cell clustering data. The 

performance is measured by average Jaccard index across 16 data sets. We compared 

18 DR methods, including factor analysis (FA; light green), principal component analysis 

(PCA; light blue), independent component analysis (ICA; blue), Diffusion Map (pink), 

nonnegative matrix factorization (NMF; green), Poisson NMF(light orange), zero-inflated 

factor analysis (ZIFA; light pink), zero-inflated negative binomial based wanted variation 

extraction (ZINB-WaVE; orange), probabilistic count matrix factorization (pCMF; light 

purple), deep count autoencoder network (DCA; yellow), scScope (purple), generalized 

linear model principal component analysis (GLMPCA; red), multidimensional scaling 

(MDS; cyan), locally linear embedding (LLE; blue green), local tangent space alignment 

(LTSA; teal blue), Isomap (grey), uniform manifold approximation and projection (UMAP; 

brown), and t-distributed stochastic neighbor embedding (tSNE). We used log2 count 

transformation for the subset of DR methods that use normalized data. For each data set, 

we compared the four different number of low-dimensional data. The four numbers we 

used equal to 0.5%, 1%, 2%, and 3% of the total number of cells in big data and equal to 

2, 6, 14, and 20 in small data. For convenience, we only listed 0.5%, 1%, 2%, and 3% on 

x-axis. Note that, for tSNE, we only extracted two low-dimensional components due to 

the limitation of the tSNE software. 

 



Figure S8. Bar plots show the average Jaccard index of different DR 

methods on UMI-based data and nonUMI-based data with 30 neighborhood 

cells. The performance is measured by average Jaccard index across UMI-based data 

(A; 7 data sets) or nonUMI-based data (B; 7 data sets). We compared 18 DR methods, 

including factor analysis (FA; light green), principal component analysis (PCA; light blue), 

independent component analysis (ICA; blue), Diffusion Map (pink), nonnegative matrix 

factorization (NMF; green), Poisson NMF(light orange), zero-inflated factor analysis 

(ZIFA; light pink), zero-inflated negative binomial based wanted variation extraction 

(ZINB-WaVE; orange), probabilistic count matrix factorization (pCMF; light purple), deep 

count autoencoder network (DCA; yellow), scScope (purple), generalized linear model 

principal component analysis (GLMPCA; red), multidimensional scaling (MDS; cyan), 

locally linear embedding (LLE; blue green), local tangent space alignment (LTSA; teal 

blue), Isomap (grey), uniform manifold approximation and projection (UMAP; brown), 

and t-distributed stochastic neighbor embedding (tSNE; dark red). We used log2 count 

transformation for the subset of DR methods that use normalized data. For each data set, 

we compared the four different number of low-dimensional data. The four numbers we 

used equal to 0.5%, 1%, 2%, and 3% of the total number of cells in big data and equal to 

2, 6, 14, and 20 in small data. For convenience, we only listed 0.5%, 1%, 2%, and 3% on 

x-axis. Note that, for tSNE, we only extracted two low-dimensional components due to 

the limitation of the tSNE software. 



Figure S9. DR method performance evaluated by Jaccard index on trajectory 

inference data sets with 10 neighborhood cells. We compared 18 DR methods 

(columns), including factor analysis (FA), principal component analysis (PCA), 

independent component analysis (ICA), Diffusion Map, nonnegative matrix factorization 

(NMF), Poisson NMF, zero-inflated factor analysis (ZIFA), zero-inflated negative 

binomial based wanted variation extraction (ZINB-WaVE), probabilistic count matrix 

factorization (pCMF), deep count autoencoder network (DCA), scScope, generalized 

linear model principal component analysis (GLMPCA), multidimensional scaling (MDS), 

locally linear embedding (LLE), local tangent space alignment (LTSA), Isomap, and 

uniform manifold approximation and projection (UMAP), and t-distributed stochastic 

neighbor embedding (tSNE). We evaluated their performance on 14 real scRNAseq data 

sets (rows) in terms of lineage inference accuracy. The simulated data based on Kumar 

data is labeled with #. We used log2 count transformation for the subset of DR methods 

that use normalized data. For each data set, we compared the four different number of 

low-dimensional data. The four numbers we used equal to 2, 6, 14, and 20. Note that, for 

tSNE, we only extracted two low-dimensional components due to the limitation of the 

tSNE software. 

 



Figure S10. Bar plots show the average Jaccard index of different DR 

methods with 10 neighborhood cells based on trajectory inference data. 
The performance is measured by average Jaccard index across 16 data sets. We 

compared 18 DR methods, including factor analysis (FA; light green), principal 

component analysis (PCA; light blue), independent component analysis (ICA; blue), 

Diffusion Map (pink), nonnegative matrix factorization (NMF; green), Poisson NMF(light 

orange), zero-inflated factor analysis (ZIFA; light pink), zero-inflated negative binomial 

based wanted variation extraction (ZINB-WaVE; orange), probabilistic count matrix 

factorization (pCMF; light purple), deep count autoencoder network (DCA; yellow), 

scScope (purple), generalized linear model principal component analysis (GLMPCA; 

red), multidimensional scaling (MDS; cyan), locally linear embedding (LLE; blue green), 

local tangent space alignment (LTSA; teal blue), Isomap (grey), uniform manifold 

approximation and projection (UMAP; brown), and t-distributed stochastic neighbor 

embedding (tSNE; dark red). We used log2 count transformation for the subset of DR 

methods that use normalized data. For each data set, we compared the four different 

number of low-dimensional data. The four numbers we used equal to 2, 6, 14, and 20 on 

x-axis. Note that, for tSNE, we only extracted two low-dimensional components due to 

the limitation of the tSNE software. 



Figure S11. DR method performance evaluated by Jaccard index on trajectory 

inference data sets with 20 neighborhood cells. We compared 18 DR methods 

(columns), including factor analysis (FA), principal component analysis (PCA), 

independent component analysis (ICA), Diffusion Map, nonnegative matrix factorization 

(NMF), Poisson NMF, zero-inflated factor analysis (ZIFA), zero-inflated negative 

binomial based wanted variation extraction (ZINB-WaVE), probabilistic count matrix 

factorization (pCMF), deep count autoencoder network (DCA), scScope, generalized 

linear model principal component analysis (GLMPCA), multidimensional scaling (MDS), 

locally linear embedding (LLE), local tangent space alignment (LTSA), Isomap, uniform 

manifold approximation and projection (UMAP), and t-distributed stochastic neighbor 

embedding (tSNE). We evaluated their performance on 14 real scRNAseq data sets 

(rows) in terms of lineage inference accuracy. The simulated data based on Kumar data 

is labeled with #. We used log2 count transformation for the subset of DR methods that 

use normalized data. For each data set, we compared the four different number of low-

dimensional data. The four numbers we used equal to 2, 6, 14, and 20. Note that, for 

tSNE, we only extracted two low-dimensional components due to the limitation of the 

tSNE software. 

 



Figure S12. Bar plots show the average Jaccard index of different DR 

methods with 20 neighborhood cells based on trajectory inference data. 
The performance is measured by average Jaccard index across 16 data sets. We 

compared 18 DR methods, including factor analysis (FA; light green), principal 

component analysis (PCA; light blue), independent component analysis (ICA; blue), 

Diffusion Map (pink), nonnegative matrix factorization (NMF; green), Poisson NMF(light 

orange), zero-inflated factor analysis (ZIFA; light pink), zero-inflated negative binomial 

based wanted variation extraction (ZINB-WaVE; orange), probabilistic count matrix 

factorization (pCMF; light purple), deep count autoencoder network (DCA; yellow), 

scScope (purple), generalized linear model principal component analysis (GLMPCA; 

red), multidimensional scaling (MDS; cyan), locally linear embedding (LLE; blue green), 

local tangent space alignment (LTSA; teal blue), Isomap (grey), uniform manifold 

approximation and projection (UMAP; brown), and t-distributed stochastic neighbor 

embedding (tSNE; dark red). We used log2 count transformation for the subset of DR 

methods that use normalized data. For each data set, we compared the four different 

number of low-dimensional data. The four numbers we used equal to 2, 6, 14, and 20 on 

x-axis. Note that, for tSNE, we only extracted two low-dimensional components due to 

the limitation of the tSNE software. 



Figure S13. DR method performance evaluated by Jaccard index on trajectory 

inference data sets with 30 neighborhood cells. We compared 18 DR methods 

(columns), including factor analysis (FA), principal component analysis (PCA), 

independent component analysis (ICA), Diffusion Map, nonnegative matrix factorization 

(NMF), Poisson NMF, zero-inflated factor analysis (ZIFA), zero-inflated negative 

binomial based wanted variation extraction (ZINB-WaVE), probabilistic count matrix 

factorization (pCMF), deep count autoencoder network (DCA), scScope, generalized 

linear model principal component analysis (GLMPCA), multidimensional scaling (MDS), 

locally linear embedding (LLE), local tangent space alignment (LTSA), Isomap, uniform 

manifold approximation and projection (UMAP), and t-distributed stochastic neighbor 

embedding (tSNE). We evaluated their performance on 14 real scRNAseq data sets 

(rows) in terms of lineage inference accuracy. The simulated data based on Kumar data 

is labeled with #. We used log2 count transformation for the subset of DR methods that 

use normalized data. For each data set, we compared the four different number of low-

dimensional data. The four numbers we used equal to 2, 6, 14, and 20. Note that, for 

tSNE, we only extracted two low-dimensional components due to the limitation of the 

tSNE software. 

 

 



Figure S14. Bar plots show the average Jaccard index of different DR 

methods with 30 neighborhood cells based on trajectory inference data. 
The performance is measured by average Jaccard index across 16 data sets. We 

compared 18 DR methods, including factor analysis (FA; light green), principal 

component analysis (PCA; light blue), independent component analysis (ICA; blue), 

Diffusion Map (pink), nonnegative matrix factorization (NMF; green), Poisson NMF(light 

orange), zero-inflated factor analysis (ZIFA; light pink), zero-inflated negative binomial 

based wanted variation extraction (ZINB-WaVE; orange), probabilistic count matrix 

factorization (pCMF; light purple), deep count autoencoder network (DCA; yellow), 

scScope (purple), generalized linear model principal component analysis (GLMPCA; 

red), multidimensional scaling (MDS; cyan), locally linear embedding (LLE; blue green), 

local tangent space alignment (LTSA; teal blue), Isomap (grey), uniform manifold 

approximation and projection (UMAP; brown), and t-distributed stochastic neighbor 

embedding (tSNE; dark red). We used log2 count transformation for the subset of DR 

methods that use normalized data. For each data set, we compared the four different 

number of low-dimensional data. The four numbers we used equal to 2, 6, 14, and 20 on 

x-axis. Note that, for tSNE, we only extracted two low-dimensional components due to 

the limitation of the tSNE software. 



Figure S15. DR method performance evaluated by ARI in the downstream cell 

clustering analysis with k-means. We compared 18 DR methods (columns), including 

factor analysis (FA), principal component analysis (PCA), independent component 

analysis (ICA), Diffusion Map, nonnegative matrix factorization (NMF), Poisson NMF, 

zero-inflated factor analysis (ZIFA), zero-inflated negative binomial based wanted 

variation extraction (ZINB-WaVE), probabilistic count matrix factorization (pCMF), deep 

count autoencoder network (DCA), scScope, generalized linear model principal 

component analysis (GLMPCA), multidimensional scaling (MDS), locally linear 

embedding (LLE), local tangent space alignment (LTSA), Isomap, uniform manifold 

approximation and projection (UMAP), and t-distributed stochastic neighbor embedding 

(tSNE). We evaluated their performance on 14 real scRNAseq data sets (UMI-based 

data are labeled as purple; nonUMI–based data are labeled as blue) and 2 simulated 

data sets (rows). The simulated data based on Kumar data is labeled with #. The 

performance of each DR method is measured by normalized mutual information (NMI). 

For each data set, we compared the four different number of low-dimensional 

components. The four numbers equal to 0.5%, 1%, 2%, and 3% of the total number of 

cells in big data and equal to 2, 6, 14, and 20 in small data (which are labeled with *). 

For convenience, we only listed 0.5%, 1%, 2%, and 3% on x-axis. No results for ICA and 

LTSA are shown in the table (grey fills) because ICA cannot handle the large number of 

features in that data or estimated zero low-dimensional components. Note that, for tSNE, 

we only extracted two low-dimensional components due to the limitation of the tSNE 

software. 

 

 

 



Figure S16. Bar plots show the average performance of different DR 

methods based on k-means clustering. The performance is measured by average 

normalized mutual information (NMI; A) or average adjusted rand index (ARI; B), both 

averaged across 16 data sets. We compared 18 DR methods, including factor analysis 

(FA; light green), principal component analysis (PCA; light blue), independent 

component analysis (ICA; blue), Diffusion Map (pink), nonnegative matrix factorization 

(NMF; green), Poisson NMF(light orange), zero-inflated factor analysis (ZIFA; light pink), 

zero-inflated negative binomial based wanted variation extraction (ZINB-WaVE; orange), 

probabilistic count matrix factorization (pCMF; light purple), deep count autoencoder 

network (DCA; yellow), scScope (purple), generalized linear model principal component 

analysis (GLMPCA; red), multidimensional scaling (MDS; cyan), locally linear 

embedding (LLE; blue green), local tangent space alignment (LTSA; teal blue), Isomap 

(grey), uniform manifold approximation and projection (UMAP; brown), and t-distributed 

stochastic neighbor embedding (tSNE; dark red). We used log2 Count transformation for 

the subset of DR methods that use normalized data. For each data set, we compared 

the four different number of low-dimensional data. The four numbers we used equal to 

0.5%, 1%, 2%, and 3% of the total number of cells in big data and equal to 2, 6, 14, and 

20 in small data. For convenience, we only listed 0.5%, 1%, 2%, and 3% on x-axis. Note 

that, for tSNE, we only extracted two low-dimensional components due to the limitation 

of the tSNE software. 

 

 



Figure S17. DR method performance evaluated by NMI in the downstream cell 

clustering analysis with hierarchical clustering. We compared 17 DR methods 

(columns), including factor analysis (FA), principal component analysis (PCA), 

independent component analysis (ICA), Diffusion Map, nonnegative matrix factorization 

(NMF), Poisson NMF, zero-inflated factor analysis (ZIFA), zero-inflated negative 

binomial based wanted variation extraction (ZINB-WaVE), probabilistic count matrix 

factorization (pCMF), deep count autoencoder network (DCA), generalized linear model 

principal component analysis (GLMPCA), multidimensional scaling (MDS), locally linear 

embedding (LLE), local tangent space alignment (LTSA), Isomap, uniform manifold 

approximation and projection (UMAP), and t-distributed stochastic neighbor embedding 

(tSNE). We evaluated their performance on 14 real scRNAseq data sets and 2 simulated 

data sets (rows). The simulated data based on Kumar data is labeled with #. We used 

log2 Count transformation for the subset of DR methods that use normalized data. For 

each data set, we compared the four different number of low-dimensional data. The four 

numbers we used equal to 0.5%, 1%, 2%, and 3% of the total number of cells in big data 

and equal to 2, 6, 14, and 20 in small data (which were labeled with *). For convenience, 

we only listed 0.5%, 1%, 2%, and 3% on x-axis. No results for ICA, tSNE or GLMPCA 

are shown in the table (grey fills) because ICA cannot handle the large number of 

features; tSNE and GLMPCA have error when clustering cells. Note that, for tSNE, we 

only extracted two low-dimensional components due to the limitation of the tSNE 

software. 

 

 



Figure S18. DR method performance evaluated by ARI in the downstream cell 

clustering analysis with hierarchical clustering. We compared 17 DR methods 

(columns), including factor analysis (FA), principal component analysis (PCA), 

independent component analysis (ICA), Diffusion Map, nonnegative matrix factorization 

(NMF), Poisson NMF, zero-inflated factor analysis (ZIFA), zero-inflated negative 

binomial based wanted variation extraction (ZINB-WaVE), probabilistic count matrix 

factorization (pCMF), deep count autoencoder network (DCA), generalized linear model 

principal component analysis (GLMPCA), multidimensional scaling (MDS), locally linear 

embedding (LLE), local tangent space alignment (LTSA), Isomap, uniform manifold 

approximation and projection (UMAP), and t-distributed stochastic neighbor embedding 

(tSNE). We evaluated their performance on 14 real scRNAseq data sets and 2 simulated 

data sets (rows). The simulated data based on Kumar data is labeled with #. We used 

log2 Count transformation for the subset of DR methods that use normalized data. For 

each data set, we compared the four different number of low-dimensional data. The four 

numbers we used equal to 0.5%, 1%, 2%, and 3% of the total number of cells in big data 

and equal to 2, 6, 14, and 20 in small data (which were labeled with *). For convenience, 

we only listed 0.5%, 1%, 2%, and 3% on x-axis. No results for ICA or GLMPCA are 

shown in the table (grey fills) because ICA cannot handle the large number of features; 

GLMPCA has error when clustering cells. Note that, for tSNE, we only extracted two low-

dimensional components due to the limitation of the tSNE software. 

 

 



Figure S19. Bar plots show the average performance of different DR 

methods based on hierarchical clustering. The performance is measured by 

normalized mutual information (NMI; A) or adjusted rand index (ARI; B), both averaged 

across 16 data sets. We compared 17 DR methods, including factor analysis (FA; light 

green), principal component analysis (PCA; light blue), independent component analysis 

(ICA; blue), Diffusion Map (pink), nonnegative matrix factorization (NMF; green), Poisson 

NMF(light orange), zero-inflated factor analysis (ZIFA; light pink), zero-inflated negative 

binomial based wanted variation extraction (ZINB-WaVE; orange), probabilistic count 

matrix factorization (pCMF; light purple), deep count autoencoder network (DCA; yellow), 

generalized linear model principal component analysis (GLMPCA; red), multidimensional 

scaling (MDS; cyan), locally linear embedding (LLE; blue green), local tangent space 

alignment (LTSA; teal blue), Isomap (grey), uniform manifold approximation and 

projection (UMAP; brown), and t-distributed stochastic neighbor embedding (tSNE; dark 

red). We used log2 Count transformation for the subset of DR methods that use 

normalized data.  For each data set, we compared the four different number of low-

dimensional data. The four numbers we used equal to 0.5%, 1%, 2%, and 3% of the 

total number of cells in big data and equal to 2, 6, 14, and 20 in small data. For 

convenience, we only listed 0.5%, 1%, 2%, and 3% on x-axis. Note that, for tSNE, we 

only extracted two low-dimensional components due to the limitation of the tSNE 

software. 

 



Figure S20. DR method performance evaluated by NMI in the downstream cell 

clustering analysis with Louvain clustering. We compared 18 DR methods (columns), 

including factor analysis (FA), principal component analysis (PCA), independent 

component analysis (ICA), Diffusion Map, nonnegative matrix factorization (NMF), 

Poisson NMF, zero-inflated factor analysis (ZIFA), zero-inflated negative binomial based 

wanted variation extraction (ZINB-WaVE), probabilistic count matrix factorization (pCMF), 

deep count autoencoder network (DCA), scScope, generalized linear model principal 

component analysis (GLMPCA), multidimensional scaling (MDS), locally linear 

embedding (LLE), local tangent space alignment (LTSA), Isomap, uniform manifold 

approximation and projection (UMAP), and t-distributed stochastic neighbor embedding 

(tSNE). We evaluated their performance on 14 real scRNAseq data sets and 2 simulated 

data sets (rows). The simulated data based on Kumar data is labeled with #. We used 

log2 Count transformation for the subset of DR methods that use normalized data. For 

each data set, we compared the four different number of low-dimensional data. The four 

numbers we used equal to 0.5%, 1%, 2%, and 3% of the total number of cells in big data 

and equal to 2, 6, 14, and 20 in small data (which were labeled with *). For convenience, 

we only listed 0.5%, 1%, 2%, and 3% on x-axis. No results for ICA are shown in the 

table (grey fills) because ICA cannot handle the large number of features. Note that, for 

tSNE, we only extracted two low-dimensional components due to the limitation of the 

tSNE software. 

 

 

 



Figure S21. DR method performance evaluated by ARI in the downstream cell 

clustering analysis with Louvain clustering. We compared 18 DR methods (columns), 

including factor analysis (FA), principal component analysis (PCA), independent 

component analysis (ICA), Diffusion Map, nonnegative matrix factorization (NMF), 

Poisson NMF, zero-inflated factor analysis (ZIFA), zero-inflated negative binomial based 

wanted variation extraction (ZINB-WaVE), probabilistic count matrix factorization (pCMF), 

deep count autoencoder network (DCA), scScope, generalized linear model principal 

component analysis (GLMPCA), multidimensional scaling (MDS), locally linear 

embedding (LLE), local tangent space alignment (LTSA), Isomap, uniform manifold 

approximation and projection (UMAP), and t-distributed stochastic neighbor embedding 

(tSNE; dark red). We evaluated their performance on 14 real scRNAseq data sets and 2 

simulated data sets (rows). The simulated data based on Kumar data is labeled with #. 

We used log2 Count transformation for the subset of DR methods that use normalized 

data. For each data set, we compared the four different number of low-dimensional data. 

The four numbers we used equal to 0.5%, 1%, 2%, and 3% of the total number of cells 

in big data and equal to 2, 6, 14, and 20 in small data (which were labeled with *). For 

convenience, we only listed 0.5%, 1%, 2%, and 3% on x-axis. No results for ICA are 

shown in the table (grey fills) because ICA cannot handle the large number of features. 

Note that, for tSNE, we only extracted two low-dimensional components due to the 

limitation of the tSNE software. 

 

 



Figure S22. Bar plots show the average performance of different DR 

methods based on Louvain clustering. The performance is measured by 

normalized mutual information (NMI; A) or adjusted rand index (ARI; B), both averaged 

across 16 data sets. We compared 18 DR methods, including factor analysis (FA; light 

green), principal component analysis (PCA; light blue), independent component analysis 

(ICA; blue), Diffusion Map (pink), nonnegative matrix factorization (NMF; green), Poisson 

NMF(light orange), zero-inflated factor analysis (ZIFA; light pink), zero-inflated negative 

binomial based wanted variation extraction (ZINB-WaVE; orange), probabilistic count 

matrix factorization (pCMF; light purple), deep count autoencoder network (DCA; yellow), 

scScope, generalized linear model principal component analysis (GLMPCA; red), 

multidimensional scaling (MDS; cyan), locally linear embedding (LLE; blue green), local 

tangent space alignment (LTSA; teal blue), Isomap (grey), uniform manifold 

approximation and projection (UMAP; brown), and t-distributed stochastic neighbor 

embedding (tSNE; dark red). We used log2 Count transformation for the subset of DR 

methods that use normalized data.  For each data set, we compared the four different 

number of low-dimensional data. The four numbers we used equal to 0.5%, 1%, 2%, and 

3% of the total number of cells in big data and equal to 2, 6, 14, and 20 in small data. 

For convenience, we only listed 0.5%, 1%, 2%, and 3% on x-axis. Note that, for tSNE, 

we only extracted two low-dimensional components due to the limitation of the tSNE 

software. 

 



Figure S23. DR method performance with log-2 CPM transformed data evaluated 

based on downstream cell clustering analysis. Performance is evaluated by 

normalized mutual index (NMI) either based on k-means clustering. We compared 11 

DR methods (columns), including factor analysis (FA), principal component analysis 

(PCA), independent component analysis (ICA), Diffusion Map, nonnegative matrix 

factorization (NMF) , multidimensional scaling (MDS), locally linear embedding (LLE), 

local tangent space alignment (LTSA), Isomap, uniform manifold approximation and 

projection (UMAP), and t-distributed stochastic neighbor embedding (tSNE). We 

evaluated their performance on 14 real scRNAseq data sets and 2 simulated data sets 

(rows). The simulated data based on Kumar data is labeled with #. We used log2 CPM 

transformation for the subset of DR methods that use normalized data. For each data set, 

we compared the four different number of low-dimensional data. The four numbers we 

used equal to 0.5%, 1%, 2%, and 3% of the total number of cells in big data and equal to 

2, 6, 14, and 20 in small data (labeled with *). No results for ICA are shown in the 

Pancreatic data (grey fills) because ICA cannot handle the large number of features in 

the data. Note that, for tSNE, we only extracted two low-dimensional components due to 

the limitation of the tSNE software. 

 



Figure S24. DR method performance with log-2 CPM transformed data evaluated 

based on downstream cell clustering analysis. Performance is evaluated by 

normalized mutual index (NMI) either based on hierarchical clustering. We compared 11 

DR methods (columns), including factor analysis (FA), principal component analysis 

(PCA), independent component analysis (ICA), Diffusion Map, nonnegative matrix 

factorization (NMF) , multidimensional scaling (MDS), locally linear embedding (LLE), 

local tangent space alignment (LTSA), Isomap, uniform manifold approximation and 

projection (UMAP), and t-distributed stochastic neighbor embedding (tSNE). We 

evaluated their performance on 14 real scRNAseq data sets and 2 simulated data sets 

(rows). The simulated data based on Kumar data is labeled with #. We used log2 CPM 

transformation for the subset of DR methods that use normalized data. For each data set, 

we compared the four different number of low-dimensional data. The four numbers we 

used equal to 0.5%, 1%, 2%, and 3% of the total number of cells in big data and equal to 

2, 6, 14, and 20 in small data (labeled with *). No results for ICA are shown in the 

Pancreatic data (grey fills) because ICA cannot handle the large number of features in 

the data. Note that, for tSNE, we only extracted two low-dimensional components due to 

the limitation of the tSNE software. 

 



Figure S25. DR method performance with log-2 CPM transformed data evaluated 

based on downstream cell clustering analysis. Performance is evaluated by 

normalized mutual index (NMI) either based on Louvain method. We compared 11 DR 

methods (columns), including factor analysis (FA), principal component analysis (PCA), 

independent component analysis (ICA), Diffusion Map, nonnegative matrix factorization 

(NMF), multidimensional scaling (MDS), locally linear embedding (LLE), local tangent 

space alignment (LTSA), Isomap, uniform manifold approximation and projection 

(UMAP), and t-distributed stochastic neighbor embedding (tSNE). We evaluated their 

performance on 14 real scRNAseq data sets and 2 simulated data sets (rows). The 

simulated data based on Kumar data is labeled with #. We used log2 CPM 

transformation for the subset of DR methods that use normalized data. For each data set, 

we compared the four different number of low-dimensional data. The four numbers we 

used equal to 0.5%, 1%, 2%, and 3% of the total number of cells in big data and equal to 

2, 6, 14, and 20 in small data (labeled with *). No results for ICA are shown in the 

Pancreatic data (zeros) because ICA cannot handle the large number of features in the 

data. Note that, for tSNE, we only extracted two low-dimensional components due to the 

limitation of the tSNE software. 

 



Figure S26. Bar plots show the average performance of a subset of DR 

methods that use log2 CPM normalized data. The performance of each DR 

method is measured by normalized mutual index (NMI) using either k-means 

clustering (A), hierarchical clustering (B) or Louvain method (C), the averaged across 

16 date sets. We used log2 CPM transformation for the subset of DR methods that use 

normalized data. We compared 11 DR methods that use normalized data, including 

factor analysis (FA; light green), principal component analysis (PCA; light blue), 

independent component analysis (ICA; blue), Diffusion Map (pink), nonnegative matrix 

factorization (NMF; green), multidimensional scaling (MDS; cyan), locally linear 

embedding (LLE; blue green), local tangent space alignment (LTSA; teal blue), Isomap 

(grey), uniform manifold approximation and projection (UMAP; brown), and t-distributed 

stochastic neighbor embedding (tSNE; dark red). For each data set, we compared the 

four different number of low-dimensional data. The four numbers we used equal to 0.5%, 

1%, 2%, and 3% of the total number of cells in big data and equal to 2, 6, 14, and 20 in 

small data. For convenience, we only listed 0.5%, 1%, 2%, and 3% on x-axis. Note that, 

for tSNE, we only extracted two low-dimensional components due to the limitation of the 

tSNE software. 



Figure S27. DR method performance with z-score transformed data in 

downstream cell clustering analysis. Performance is evaluated by normalized mutual 

index (NMI) either based on k-means clustering. We compared 10 DR methods 

(columns), including factor analysis (FA), principal component analysis (PCA), 

independent component analysis (ICA), Diffusion Map, multidimensional scaling (MDS), 

locally linear embedding (LLE), local tangent space alignment (LTSA), Isomap, uniform 

manifold approximation and projection (UMAP), and t-distributed stochastic neighbor 

embedding (tSNE). We evaluated their performance on 14 real scRNAseq data sets and 

2 simulated data sets (rows). The simulated data based on Kumar data is labeled with #. 

We used z-score transformation for the subset of DR methods that use normalized data. 

For each data set, we compared the four different number of low-dimensional data. The 

four numbers we used equal to 0.5%, 1%, 2%, and 3% of the total number of cells in big 

data and equal to 2, 6, 14, and 20 in small data which were labeled with *. For 

convenience, we only listed 0.5%, 1%, 2%, and 3% on x-axis. No results for ICA are 

shown in the Pancreatic data (grey fills) because ICA cannot handle the large number of 

features in the data. No results for NMF are shown because z-score normalization have 

negative values. Note that, for tSNE, we only extracted two low-dimensional components 

due to the limitation of the tSNE software. 

 



Figure S28. DR method performance with z-score transformed data in 

downstream cell clustering analysis. Performance is evaluated by normalized mutual 

index (NMI) either based on hierarchical clustering. We compared 10 DR methods 

(columns), including factor analysis (FA), principal component analysis (PCA), 

independent component analysis (ICA), Diffusion Map, multidimensional scaling (MDS), 

locally linear embedding (LLE), local tangent space alignment (LTSA), Isomap, uniform 

manifold approximation and projection (UMAP), and t-distributed stochastic neighbor 

embedding (tSNE). We evaluated their performance on 14 real scRNAseq data sets and 

2 simulated data sets (rows). The simulated data based on Kumar data is labeled with #. 

We used z-score transformation for the subset of DR methods that use normalized data. 

For each data set, we compared the four different number of low-dimensional data. The 

four numbers we used equal to 0.5%, 1%, 2%, and 3% of the total number of cells in big 

data and equal to 2, 6, 14, and 20 in small data which were labeled with *. For 

convenience, we only listed 0.5%, 1%, 2%, and 3% on x-axis. No results for ICA are 

shown in the Pancreatic data (grey fills) because ICA cannot handle the large number of 

features in the data. No results for NMF are shown because z-score normalization have 

negative values. Note that, for tSNE, we only extracted two low-dimensional components 

due to the limitation of the tSNE software. 

 



Figure S29. DR method performance with z-score transformed data in 

downstream cell clustering analysis. Performance is evaluated by normalized mutual 

index (NMI) either based on Louvain method. We compared 10 DR methods (columns), 

including factor analysis (FA), principal component analysis (PCA), independent 

component analysis (ICA), Diffusion Map, multidimensional scaling (MDS), locally linear 

embedding (LLE), local tangent space alignment (LTSA), Isomap, uniform manifold 

approximation and projection (UMAP), and t-distributed stochastic neighbor embedding 

(tSNE). We evaluated their performance on 14 real scRNAseq data sets and 2 simulated 

data sets (rows). The simulated data based on Kumar data is labeled with #. We used z-

score transformation for the subset of DR methods that use normalized data. For each 

data set, we compared the four different number of low-dimensional data. The four 

numbers we used equal to 0.5%, 1%, 2%, and 3% of the total number of cells in big data 

and equal to 2, 6, 14, and 20 in small data which were labeled with *. For convenience, 

we only listed 0.5%, 1%, 2%, and 3% on x-axis. No results for ICA are shown in the 

Pancreatic data (grey fills) because ICA cannot handle the large number of features in 

the data. No results for NMF are shown because z-score normalization have negative 

values. Note that, for tSNE, we only extracted two low-dimensional components due to 

the limitation of the tSNE software. 



Figure S30. Bar plots show the average performance of a subset of DR 

methods that use z-score normalized data. The performance of each DR 

method is measured by normalized mutual index (NMI) using either k-means 

clustering (A), hierarchical clustering (B) or Louvain method (C), the averaged across 

16 date sets. We used z-score transformation for the subset of DR methods that use 

normalized data. We compared 10 DR methods that use normalized data, including 

factor analysis (FA; light green), principal component analysis (PCA; light blue), 

independent component analysis (ICA; blue), Diffusion Map (pink), multidimensional 

scaling (MDS; cyan), locally linear embedding (LLE; blue green), local tangent space 

alignment (LTSA; teal blue), Isomap (grey), uniform manifold approximation and 

projection (UMAP; brown), and t-distributed stochastic neighbor embedding (tSNE; dark 

red). For each data set, we compared the four different number of low-dimensional data. 

The four numbers we used equal to 0.5%, 1%, 2%, and 3% of the total number of cells 

in big data and equal to 2, 6, 14, and 20 in small data. For convenience, we only listed 

0.5%, 1%, 2%, and 3% on x-axis. The four numbers we used equal to 0.5%, 1%, 2%, 

and 3% of the total number of cells in big data and equal to 2, 6, 14, and 20 in small data. 

For convenience, we only listed 0.5%, 1%, 2%, and 3% on x-axis. Note that, for tSNE, 

we only extracted two low-dimensional components due to the limitation of the tSNE 

software. 



Figure S31. Bar plots show the average NMI of different DR methods on 

UMI-based data and nonUMI-based data. The performance is measured by 

average NMI across UMI-based data (A; 7 data sets) or nonUMI-based data (B; 7 data 

sets). We compared 18 DR methods, including factor analysis (FA; light green), principal 

component analysis (PCA; light blue), independent component analysis (ICA; blue), 

Diffusion Map (pink), nonnegative matrix factorization (NMF; green), Poisson NMF(light 

orange), zero-inflated factor analysis (ZIFA; light pink), zero-inflated negative binomial 

based wanted variation extraction (ZINB-WaVE; orange), probabilistic count matrix 

factorization (pCMF; light purple), deep count autoencoder network (DCA; yellow), 

scScope (purple), generalized linear model principal component analysis (GLMPCA; 

red), multidimensional scaling (MDS; cyan), locally linear embedding (LLE; blue green), 

local tangent space alignment (LTSA; teal blue), Isomap (grey), uniform manifold 

approximation and projection (UMAP; brown), and t-distributed stochastic neighbor 

embedding (tSNE; dark red). We used log2 count transformation for the subset of DR 

methods that use normalized data. For each data set, we compared the four different 

number of low-dimensional data. The four numbers we used equal to 0.5%, 1%, 2%, and 

3% of the total number of cells in big data and equal to 2, 6, 14, and 20 in small data. 

For convenience, we only listed 0.5%, 1%, 2%, and 3% on x-axis. Note that, for tSNE, 

we only extracted two low-dimensional components due to the limitation of the tSNE 

software. 

 



Figure S32. Scatter plots visualize the clusters of different DR methods on 

Kumar data set. We compared 17 DR methods (columns), including factor analysis 

(FA), principal component analysis (PCA), independent component analysis (ICA), 

Diffusion Map, nonnegative matrix factorization (NMF), Poisson NMF, zero-inflated 

factor analysis (ZIFA), zero-inflated negative binomial based wanted variation extraction 

(ZINB-WaVE), probabilistic count matrix factorization (pCMF), deep count autoencoder 

network (DCA), scScope, generalized linear model principal component analysis 

(GLMPCA), multidimensional scaling (MDS), locally linear embedding (LLE) , Isomap, 

uniform manifold approximation and projection (UMAP), and t-distributed stochastic 

neighbor embedding (tSNE). We used log2 count transformation for the subset of DR 

methods that use normalized data. For each data set, we first reduced the dimension to 

20, then applied tSNE to visualize the clusters. Local tangent space alignment (LTSA) 

was excluded because of failing to extract low-dimensional components. 



Figure S33. Scatter plots show the clusters of different DR methods on 

PBMC3k data set. We compared 18 DR methods (columns), including factor analysis 

(FA), principal component analysis (PCA), independent component analysis (ICA), 

Diffusion Map, nonnegative matrix factorization (NMF), Poisson NMF, zero-inflated 

factor analysis (ZIFA), zero-inflated negative binomial based wanted variation extraction 

(ZINB-WaVE), probabilistic count matrix factorization (pCMF), deep count autoencoder 

network (DCA), scScope, generalized linear model principal component analysis 

(GLMPCA), multidimensional scaling (MDS), locally linear embedding (LLE), local 

tangent space alignment (LTSA), Isomap, uniform manifold approximation and projection 

(UMAP), and t-distributed stochastic neighbor embedding (tSNE). We used log2 count 

transformation for the subset of DR methods that use normalized data. For each data set, 

we first reduced the dimension to 32, then applied tSNE to visualize the clusters. 



Figure S34. Bar plots show the F-measure of different DR methods on the 

rare data set PBMC3k1Rare1 (contains 4.0% CD34+ cells). The performance is 

measured by k-means clustering (A), hierarchical clustering (B) or Louvain method (C). 

We compared 18 DR methods, including factor analysis (FA; light green), principal 

component analysis (PCA; light blue), independent component analysis (ICA; blue), 

Diffusion Map (pink), nonnegative matrix factorization (NMF; green), Poisson NMF(light 

orange), zero-inflated factor analysis (ZIFA; light pink), zero-inflated negative binomial 

based wanted variation extraction (ZINB-WaVE; orange), probabilistic count matrix 

factorization (pCMF; light purple), deep count autoencoder network (DCA; yellow), 

scScope (purple), generalized linear model principal component analysis (GLMPCA; 

red), multidimensional scaling (MDS; cyan), locally linear embedding (LLE; blue green), 

local tangent space alignment (LTSA; teal blue), Isomap (grey), uniform manifold 

approximation and projection (UMAP; brown), and t-distributed stochastic neighbor 

embedding (tSNE; dark red). We used log2 count transformation for the subset of DR 

methods that use normalized data. For each data set, we compared the four different 

number of low-dimensional data. The four numbers we used equal to 0.5%, 1%, 2%, and 

3% of the total number of cells. Note that, for tSNE, we only extracted two low-

dimensional components due to the limitation of the tSNE software. 



Figure S35. Bar plots show the F-measure of different DR methods on the 

rare data set PBMC3k1Rare2 (contains 7.9% CD34+ cells). The performance is 

measured by k-means clustering (A), hierarchical clustering (B) or Louvain method (C). 

We compared 18 DR methods, including factor analysis (FA; light green), principal 

component analysis (PCA; light blue), independent component analysis (ICA; blue), 

Diffusion Map (pink), nonnegative matrix factorization (NMF; green), Poisson NMF(light 

orange), zero-inflated factor analysis (ZIFA; light pink), zero-inflated negative binomial 

based wanted variation extraction (ZINB-WaVE; orange), probabilistic count matrix 

factorization (pCMF; light purple), deep count autoencoder network (DCA; yellow), 

scScope (purple), generalized linear model principal component analysis (GLMPCA; 

red), multidimensional scaling (MDS; cyan), locally linear embedding (LLE; blue green), 

local tangent space alignment (LTSA; teal blue), Isomap (grey), uniform manifold 

approximation and projection (UMAP; brown), and t-distributed stochastic neighbor 

embedding (tSNE; dark red). We used log2 count transformation for the subset of DR 

methods that use normalized data. For each data set, we compared the four different 

number of low-dimensional data. The four numbers we used equal to 0.5%, 1%, 2%, and 

3% of the total number of cells. Note that, for tSNE, we only extracted two low-

dimensional components due to the limitation of the tSNE software. 



Figure S36. The stability and robustness of DR methods evaluated based on 

data split of the Kumar data. We compared 18 DR methods (columns), including factor 

analysis (FA), principal component analysis (PCA), independent component analysis 

(ICA), Diffusion Map, nonnegative matrix factorization (NMF), Poisson NMF, zero-

inflated factor analysis (ZIFA), zero-inflated negative binomial based wanted variation 

extraction (ZINB-WaVE), probabilistic count matrix factorization (pCMF), deep count 

autoencoder network (DCA), scScope, generalized linear model principal component 

analysis (GLMPCA), multidimensional scaling (MDS), locally linear embedding (LLE), 

local tangent space alignment (LTSA), Isomap, uniform manifold approximation and 

projection (UMAP), and t-distributed stochastic neighbor embedding (tSNE). We split the 

Kumar data randomly into two subsets with equal number of cells in each cell type (one 

colored red; the other colored green). We applied each DR method to each subset 

separately to obtain clustering results. Performance is measured by normalized mutual 

index (NMI) after k-means clustering. We performed 10 replicates for each data and 

show the performance results across these replicates using boxplot. For each data set, 

we compared the four different number of low-dimensional data. The four numbers we 

used equal to 2, 6, 14, and 20 (x-axis). Note that, for tSNE, we only extracted two low-

dimensional components due to the limitation of the tSNE software. 

 



Figure S37. DR method performance evaluated by Kendal correlation for 

downstream trajectory inference analysis. For each method, we used Slingshot to 

perform trajectory inference with hierarchical clustering as the initial step. We compared 

17 DR methods (columns), including factor analysis (FA), principal component analysis 

(PCA), independent component analysis (ICA), Diffusion Map, nonnegative matrix 

factorization (NMF), Poisson NMF, zero-inflated factor analysis (ZIFA), zero-inflated 

negative binomial based wanted variation extraction (ZINB-WaVE), probabilistic count 

matrix factorization (pCMF), deep count autoencoder network (DCA), generalized linear 

model principal component analysis (GLMPCA), multidimensional scaling (MDS), locally 

linear embedding (LLE), local tangent space alignment (LTSA), Isomap, uniform 

manifold approximation and projection (UMAP), and t-distributed stochastic neighbor 

embedding (tSNE). We evaluated their performance on 14 real scRNAseq data sets. We 

used log2 Count transformation for the subset of DR methods that use normalized data. 

For each data set, we compared the four different number of low-dimensional data. The 

four numbers we used equal to 2, 6, 14, and 20 (x-axis). Some results of LTSA are 

empty because it is not compatible with Slingshot. Note that, for tSNE, we only extracted 

two low-dimensional components due to the limitation of the tSNE software. 

 

 



Figure S38. DR method performance evaluated by Kendal correlation for 

downstream trajectory inference analysis. For each method, we used Slingshot to 

perform trajectory inference with Louvain method as the initial step. We compared 17 

DR methods (columns), including factor analysis (FA), principal component analysis 

(PCA), independent component analysis (ICA), Diffusion Map, nonnegative matrix 

factorization (NMF), Poisson NMF, zero-inflated factor analysis (ZIFA), zero-inflated 

negative binomial based wanted variation extraction (ZINB-WaVE), probabilistic count 

matrix factorization (pCMF), deep count autoencoder network (DCA), generalized linear 

model principal component analysis (GLMPCA), multidimensional scaling (MDS), locally 

linear embedding (LLE), local tangent space alignment (LTSA), Isomap, uniform 

manifold approximation and projection (UMAP), and t-distributed stochastic neighbor 

embedding (tSNE). We evaluated their performance on 14 real scRNAseq data sets. We 

used log2 Count transformation for the subset of DR methods that use normalized data. 

For each data set, we compared the four different number of low-dimensional data. The 

four numbers we used equal to 2, 6, 14, and 20 (x-axis). Some results of LTSA are 

empty because it is not compatible with Slingshot. Note that, for tSNE, we only extracted 

two low-dimensional components due to the limitation of the tSNE software. 



Figure S39. Bar plots show the average performance of different DR methods in 

downstream trajectory inference analysis. The performance is evaluated by Kendal 

correlation averaged across 14 data sets. For each method, we used Slingshot to 

perform trajectory inference with either k-means (A), hierarchical clustering (B) or 

Louvain method (C) as the initial step. We compared 17 DR methods, including factor 

analysis (FA; light green), principal component analysis (PCA; light blue), independent 

component analysis (ICA; blue), Diffusion Map (pink), nonnegative matrix factorization 

(NMF; green), Poisson NMF(light orange), zero-inflated factor analysis (ZIFA; light pink), 

zero-inflated negative binomial based wanted variation extraction (ZINB-WaVE; orange), 

probabilistic count matrix factorization (pCMF; light purple), deep count autoencoder 

network (DCA; yellow), generalized linear model principal component analysis 

(GLMPCA; red), multidimensional scaling (MDS; cyan), locally linear embedding (LLE; 

blue green), local tangent space alignment (LTSA; teal blue), Isomap (grey), uniform 

manifold approximation and projection (UMAP; brown), and t-distributed stochastic 

neighbor embedding (tSNE; dark red). We used log2 Count transformation for the subset 

of DR methods that use normalized data. For each data set, we compared the four 

different number of low-dimensional data. The four numbers we used equal to 2, 6, 14, 

and 20 (x-axis). Note that, for tSNE, we only extracted two low-dimensional components 

due to the limitation of the tSNE software. 



Figure S40. DR method performance evaluated by Kendal correlation for 

downstream trajectory inference analysis. For each method, we used Monocle3 to 

perform trajectory inference. We compared 17 DR methods (columns), including factor 

analysis (FA), principal component analysis (PCA), independent component analysis 

(ICA), Diffusion Map, nonnegative matrix factorization (NMF), Poisson NMF, zero-

inflated factor analysis (ZIFA), zero-inflated negative binomial based wanted variation 

extraction (ZINB-WaVE), probabilistic count matrix factorization (pCMF), deep count 

autoencoder network (DCA), generalized linear model principal component analysis 

(GLMPCA), multidimensional scaling (MDS), locally linear embedding (LLE), local 

tangent space alignment (LTSA), Isomap, uniform manifold approximation and projection 

(UMAP), and t-distributed stochastic neighbor embedding (tSNE). We evaluated their 

performance on 14 real scRNAseq data sets. We used log2 Count transformation for the 

subset of DR methods that use normalized data. For each data set, we compared the 

four different number of low-dimensional data. The four numbers we used equal to 2, 6, 

14, and 20 (x-axis). Some results of LTSA are empty because it is not compatible with 

Monocle3. Note that, for tSNE, we only extracted two low-dimensional components due 

to the limitation of the tSNE software. 



Figure S41. Bar plots show the average performance of different DR methods in 

downstream trajectory inference analysis. The performance is evaluated by Kendal 

correlation averaged across 14 data sets. For each method, we used Monocle3 to 

perform trajectory inference. We compared 17 DR methods, including factor analysis 

(FA; light green), principal component analysis (PCA; light blue), independent 

component analysis (ICA; blue), Diffusion Map (pink), nonnegative matrix factorization 

(NMF; green), Poisson NMF(light orange), zero-inflated factor analysis (ZIFA; light pink), 

zero-inflated negative binomial based wanted variation extraction (ZINB-WaVE; orange), 

probabilistic count matrix factorization (pCMF; light purple), deep count autoencoder 

network (DCA; yellow), generalized linear model principal component analysis 

(GLMPCA; red), multidimensional scaling (MDS; cyan), locally linear embedding (LLE; 

blue green), local tangent space alignment (LTSA; teal blue), Isomap (grey), uniform 

manifold approximation and projection (UMAP; brown), and t-distributed stochastic 

neighbor embedding (tSNE; dark red). We used log2 Count transformation for the subset 

of DR methods that use normalized data. For each data set, we compared the four 

different number of low-dimensional data. The four numbers we used equal to 2, 6, 14, 

and 20 (x-axis). Note that, for tSNE, we only extracted two low-dimensional components 

due to the limitation of the tSNE software. 



Figure S42. Trajectory visualization of different DR methods on ZhangBeta 

data set. We compared 17 DR methods (columns), including factor analysis (FA), 

principal component analysis (PCA), independent component analysis (ICA), Diffusion 

Map, nonnegative matrix factorization (NMF), Poisson NMF, zero-inflated factor analysis 

(ZIFA), zero-inflated negative binomial based wanted variation extraction (ZINB-WaVE), 

probabilistic count matrix factorization (pCMF), deep count autoencoder network (DCA), 

generalized linear model principal component analysis (GLMPCA), multidimensional 

scaling (MDS), locally linear embedding (LLE), local tangent space alignment (LTSA), 

Isomap, uniform manifold approximation and projection (UMAP), and t-distributed 

stochastic neighbor embedding (tSNE). We used log2 Count transformation for the 

subset of DR methods that use normalized data. For each data set, we first reduced the 

dimension to 2, then applied UMAP to visualize the trajectory. 



Figure S43. DR method performance with log-2 CPM transformed data for 

downstream trajectory inference analysis. Performance is evaluated by Kendal 

correlation coefficient. For each method, we used Slingshot to perform trajectory 

inference on log2 CPM transformed data with k-means as the initial step. We compared 

11 DR methods (columns), including factor analysis (FA), principal component analysis 

(PCA), independent component analysis (ICA), nonnegative matrix factorization (NMF), 

Diffusion Map, multidimensional scaling (MDS), locally linear embedding (LLE), local 

tangent space alignment (LTSA), Isomap, uniform manifold approximation and projection 

(UMAP), and t-distributed stochastic neighbor embedding (tSNE). We evaluated their 

performance on 14 real scRNAseq data sets (rows). For each data set, we compared 

the four different number of low-dimensional data. The four numbers we used equal to 2, 

6, 14, and 20 (x-axis). Some results for LTSA or NMF are not shown (grey fills) because 

error occurred when we applied Slingshot on LTSA or NMF extracted low-dimensional 

components there. Note that, for tSNE, we only extracted two low-dimensional 

components due to the limitation of the tSNE software. 

 



Figure S44. DR method performance with log-2 CPM transformed data for 

downstream trajectory inference analysis. Performance is evaluated by Kendal 

correlation coefficient. For each method, we used Slingshot to perform trajectory 

inference on log2 CPM transformed data with hierarchical clustering as the initial step. 

We compared 11 DR methods (columns), including factor analysis (FA), principal 

component analysis (PCA), independent component analysis (ICA), Diffusion Map, 

nonnegative matrix factorization (NMF), multidimensional scaling (MDS), locally linear 

embedding (LLE), local tangent space alignment (LTSA), Isomap, uniform manifold 

approximation and projection (UMAP), and t-distributed stochastic neighbor embedding 

(tSNE). We evaluated their performance on 14 real scRNAseq data sets (rows). For 

each data set, we compared the four different number of low-dimensional data. The four 

numbers we used equal to 2, 6, 14, and 20 (x-axis). Some results for LTSA are not 

shown (grey fills) because error occurred when we applied Slingshot on LTSA extracted 

low-dimensional components there. Note that, for tSNE, we only extracted two low-

dimensional components due to the limitation of the tSNE software. 

 



Figure S45. DR method performance with log-2 CPM transformed data for 

downstream trajectory inference analysis. Performance is evaluated by Kendal 

correlation coefficient. For each method, we used Slingshot to perform trajectory 

inference on log2 CPM transformed data with Louvain method as the initial step. We 

compared 11 DR methods (columns), including factor analysis (FA), principal component 

analysis (PCA), independent component analysis (ICA), Diffusion Map, nonnegative 

matrix factorization (NMF), multidimensional scaling (MDS), locally linear embedding 

(LLE), local tangent space alignment (LTSA), Isomap, uniform manifold approximation 

and projection (UMAP), and t-distributed stochastic neighbor embedding (tSNE). We 

evaluated their performance on 14 real scRNAseq data sets (rows). For each data set, 

we compared the four different number of low-dimensional data. The four numbers we 

used equal to 2, 6, 14, and 20 (x-axis). Some results for LTSA are not shown (grey fills) 

because error occurred when we applied Slingshot on LTSA extracted low-dimensional 

components there. Note that, for tSNE, we only extracted two low-dimensional 

components due to the limitation of the tSNE software. 

 



Figure S46. Bar plots show the average performance of a subset of DR methods 

that use log2 CPM transformed data in downstream trajectory inference analysis. 

The performance is evaluated by Kendal correlation averaged across 14 data sets. For 

each method, we used Slingshot to perform trajectory inference with either k-means (A), 

hierarchical clustering (B) or Louvain method (C) as the initial step. We compared 11 DR 

methods, including factor analysis (FA; light green), principal component analysis (PCA; 

light blue), independent component analysis (ICA; blue), Diffusion Map (pink), 

nonnegative matrix factorization (NMF; green), multidimensional scaling (MDS; cyan), 

locally linear embedding (LLE; blue green), local tangent space alignment (LTSA; teal 

blue), Isomap (grey), uniform manifold approximation and projection (UMAP; brown), 

and t-distributed stochastic neighbor embedding (tSNE; dark red). For each data set, we 

compared the four different number of low-dimensional data. The four numbers we used 

equal to 2, 6, 14, and 20 (x-axis). Note that, for tSNE, we only extracted two low-

dimensional components due to the limitation of the tSNE software. 

 



Figure S47. DR method performance with z-score transformed data for 

downstream trajectory inference analysis. Performance is evaluated by Kendal 

correlation coefficient. For each method, we used Slingshot to perform trajectory 

inference on z-score transformed data with k-means as the initial step. We compared 10 

DR methods (columns), including factor analysis (FA), principal component analysis 

(PCA), independent component analysis (ICA), Diffusion Map, multidimensional scaling 

(MDS), locally linear embedding (LLE), local tangent space alignment (LTSA), Isomap, 

uniform manifold approximation and projection (UMAP), and t-distributed stochastic 

neighbor embedding (tSNE). We evaluated their performance on 14 real scRNAseq data 

sets (rows). For each data set, we compared the four different number of low-

dimensional data. The four numbers we used equal to 2, 6, 14, and 20. No results for 

NMF are shown in Figure because z-score transformation yields negative values. Some 

results for LTSA or ICA are not shown (grey fills) because error occurred when we 

applied Slingshot on LTSA or ICA extracted low-dimensional components there. Note 

that, for tSNE, we only extracted two low-dimensional components due to the limitation 

of the tSNE software. 

 



Figure S48. DR method performance with z-score transformed data for 

downstream trajectory inference analysis. Performance is evaluated by Kendal 

correlation coefficient. For each method, we used Slingshot to perform trajectory 

inference on z-score transformed data with hierarchical clustering as the initial step. We 

compared 10 DR methods (columns), including factor analysis (FA), principal component 

analysis (PCA), independent component analysis (ICA), Diffusion Map, multidimensional 

scaling (MDS), locally linear embedding (LLE), local tangent space alignment (LTSA), 

Isomap, uniform manifold approximation and projection (UMAP), and t-distributed 

stochastic neighbor embedding (tSNE). We evaluated their performance on 14 real 

scRNAseq data sets (rows). For each data set, we compared the four different number 

of low-dimensional data. The four numbers we used equal to 2, 6, 14, and 20. No results 

for NMF are shown in Figure because z-score transformation yields negative values. 

Some results for LTSA are not shown (grey fills) because error occurred when we 

applied Slingshot on LTSA extracted low-dimensional components there. Note that, for 

tSNE, we only extracted two low-dimensional components due to the limitation of the 

tSNE software. 

 



Figure S49. DR method performance with z-score transformed data for 

downstream trajectory inference analysis. Performance is evaluated by Kendal 

correlation coefficient. For each method, we used Slingshot to perform trajectory 

inference on z-score transformed data with Louvain method as the initial step. We 

compared 10 DR methods (columns), including factor analysis (FA), principal component 

analysis (PCA), independent component analysis (ICA), Diffusion Map, multidimensional 

scaling (MDS), locally linear embedding (LLE), local tangent space alignment (LTSA), 

Isomap, uniform manifold approximation and projection (UMAP), and t-distributed 

stochastic neighbor embedding (tSNE). We evaluated their performance on 14 real 

scRNAseq data sets (rows). For each data set, we compared the four different number 

of low-dimensional data. The four numbers we used equal to 2, 6, 14, and 20. No results 

for NMF are shown in Figure because z-score transformation yields negative values. 

Some results for LTSA are not shown (grey fills) because error occurred when we 

applied Slingshot on LTSA extracted low-dimensional components there. Note that, for 

tSNE, we only extracted two low-dimensional components due to the limitation of the 

tSNE software. 

 



Figure S50. Bar plots show the average performance of a subset of DR methods 

that use z-score transformed data in downstream trajectory inference analysis. 

The performance is evaluated by Kendal correlation averaged across 14 data sets. For 

each method, we used Slingshot to perform trajectory inference with either k-means (A), 

hierarchical clustering (B) or Louvain method (C) as the initial step. We compared 10 DR 

methods, including factor analysis (FA; light green), principal component analysis (PCA; 

light blue), independent component analysis (ICA; blue), Diffusion Map (pink), 

multidimensional scaling (MDS; cyan), locally linear embedding (LLE; blue green), local 

tangent space alignment (LTSA; teal blue), Isomap (grey), uniform manifold 

approximation and projection (UMAP; brown), and t-distributed stochastic neighbor 

embedding (tSNE; dark red). For each data set, we compared the four different number 

of low-dimensional data. The four numbers we used equal to 2, 6, 14, and 20 (x-axis). 

Note that, for tSNE, we only extracted two low-dimensional components due to the 

limitation of the tSNE software. 



Figure S51. DR method performance with log-2 CPM transformed data for 

downstream trajectory inference analysis. Performance is evaluated by Kendal 

correlation coefficient. For each method, we used Monocle3 to perform trajectory 

inference on log2 CPM transformed data. We compared 11 DR methods (columns), 

including factor analysis (FA), principal component analysis (PCA), independent 

component analysis (ICA), Diffusion Map, nonnegative matrix factorization (NMF), 

multidimensional scaling (MDS), locally linear embedding (LLE), local tangent space 

alignment (LTSA), Isomap, and uniform manifold approximation and projection (UMAP), 

and t-distributed stochastic neighbor embedding (tSNE). We evaluated their 

performance on 14 real scRNAseq data sets (rows). For each data set, we compared 

the four different number of low-dimensional data. The four numbers we used equal to 2, 

6, 14, and 20 (x-axis). Some results for LTSA are not shown (grey fills) because error 

occurred when we applied Slingshot on LTSA extracted low-dimensional components 

there. Note that, for tSNE, we only extracted two low-dimensional components due to 

the limitation of the tSNE software. 

 



Figure S52. DR method performance with z-score transformed data for 

downstream trajectory inference analysis. Performance is evaluated by Kendal 

correlation coefficient. For each method, we used Monocle3 to perform trajectory 

inference on z-score transformed data. We compared 10 DR methods (columns), 

including factor analysis (FA), principal component analysis (PCA), independent 

component analysis (ICA), Diffusion Map, multidimensional scaling (MDS), locally linear 

embedding (LLE), local tangent space alignment (LTSA), Isomap, and uniform manifold 

approximation and projection (UMAP), and t-distributed stochastic neighbor embedding 

(tSNE). We evaluated their performance on 14 real scRNAseq data sets (rows). For 

each data set, we compared the four different number of low-dimensional data. The four 

numbers we used equal to 2, 6, 14, and 20 (x-axis). No results for NMF are shown in 

Figure because z-score transformation yields negative values. Some results for LTSA 

are not shown (grey fills) because error occurred when we applied Slingshot on LTSA 

extracted low-dimensional components there. Note that, for tSNE, we only extracted two 

low-dimensional components due to the limitation of the tSNE software. 

 



Figure S53. Bar plots show the average performance of a subset of DR methods 

in downstream trajectory inference analysis. The performance is evaluated by 

Kendal correlation averaged across 14 data sets. For each method, we used Monocle3 

to perform trajectory inference on either log-2 transformation (A) or z-score 

transformation (B) data. We compared 11 DR methods, including factor analysis (FA; 

light green), principal component analysis (PCA; light blue), independent component 

analysis (ICA; blue), Diffusion Map (pink), nonnegative matrix factorization (NMF; green), 

multidimensional scaling (MDS; cyan), locally linear embedding (LLE; blue green), local 

tangent space alignment (LTSA; teal blue), Isomap (grey), uniform manifold 

approximation and projection (UMAP; brown), and t-distributed stochastic neighbor 

embedding (tSNE; dark red). For each data set, we compared the four different number 

of low-dimensional data. The four numbers we used equal to 2, 6, 14, and 20 (x-axis). 

Note that, for tSNE, we only extracted two low-dimensional components due to the 

limitation of the tSNE software. 



Figure S54. The stability and robustness of DR methods evaluated based on 

data split of the Hayashi data. We compared 17 DR methods (columns), including 

factor analysis (FA), principal component analysis (PCA), independent component 

analysis (ICA), Diffusion Map, nonnegative matrix factorization (NMF), Poisson NMF, 

zero-inflated factor analysis (ZIFA), zero-inflated negative binomial based wanted 

variation extraction (ZINB-WaVE), probabilistic count matrix factorization (pCMF), deep 

count autoencoder network (DCA), generalized linear model principal component 

analysis (GLMPCA), multidimensional scaling (MDS), locally linear embedding (LLE), 

local tangent space alignment (LTSA), Isomap, uniform manifold approximation and 

projection (UMAP), and t-distributed stochastic neighbor embedding (tSNE). We split the 

Hayashi data randomly into two subsets with equal number of cells in each cell type (one 

colored red; the other colored green). We applied each DR method to each subset 

separately to obtain lineage results. Performance is measured by Kendall correlation 

after Slingshot. We performed 10 replicates for each data and show the performance 

results across these replicates using boxplot. For each data set, we compared the four 

different number of low-dimensional data. The four numbers we used equal to 2, 6, 14, 

and 20 (x-axis). Note that, for tSNE, we only extracted two low-dimensional components 

due to the limitation of the tSNE software. 

 



Figure S55. Bar plots show the performance of different DR methods with 

k-means clustering algorithm on raw Guo data set. The performance is 

measured by NMI (A) or ARI (B). We compared 18 DR methods, including factor 

analysis (FA; light green), principal component analysis (PCA; light blue), independent 

component analysis (ICA; blue), Diffusion Map (pink), nonnegative matrix factorization 

(NMF; green), Poisson NMF(light orange), zero-inflated factor analysis (ZIFA; light pink), 

zero-inflated negative binomial based wanted variation extraction (ZINB-WaVE; orange), 

probabilistic count matrix factorization (pCMF; light purple), deep count autoencoder 

network (DCA; yellow), scScope (purple), generalized linear model principal component 

analysis (GLMPCA; red), multidimensional scaling (MDS; cyan), locally linear 

embedding (LLE; blue green), local tangent space alignment (LTSA; teal blue), Isomap 

(grey), uniform manifold approximation and projection (UMAP; brown) , and t-distributed 

stochastic neighbor embedding (tSNE; dark red). We used log2 count transformation for 

the subset of DR methods that use normalized data. For each data set, we compared 

the four different number of low-dimensional data. The four numbers we used equal to 

0.5%, 1%, 2%, and 3% of the total number of cells. Note that, for tSNE, we only 

extracted two low-dimensional components due to the limitation of the tSNE software. 



Figure S56. Bar plots show the performance of different DR methods with 

k-means clustering algorithm on Guo data set with subsampling procedure. 
The performance is measured by NMI (A) or ARI (B). We compared 18 DR methods, 

including factor analysis (FA; light green), principal component analysis (PCA; light blue), 

independent component analysis (ICA; blue), Diffusion Map (pink), nonnegative matrix 

factorization (NMF; green), Poisson NMF(light orange), zero-inflated factor analysis 

(ZIFA; light pink), zero-inflated negative binomial based wanted variation extraction 

(ZINB-WaVE; orange), probabilistic count matrix factorization (pCMF; light purple), deep 

count autoencoder network (DCA; yellow), scScope (purple), generalized linear model 

principal component analysis (GLMPCA; red), multidimensional scaling (MDS; cyan), 

locally linear embedding (LLE; blue green), local tangent space alignment (LTSA; teal 

blue), Isomap (grey), uniform manifold approximation and projection (UMAP; brown) , 

and t-distributed stochastic neighbor embedding (tSNE). We used log2 count 

transformation for the subset of DR methods that use normalized data. For each data set, 

we compared the four different number of low-dimensional data. The four numbers we 

used equal to 0.5%, 1%, 2%, and 3% of the total number of cells. Note that, for tSNE, 

we only extracted two low-dimensional components due to the limitation of the tSNE 

software. 



Figure S57. Bar plots show the performance of different DR methods with 

Slingshot on Cao data set with subsampling procedure. The performance is 

measured by NMI (A) or ARI (B). We compared 17 DR methods, including factor 

analysis (FA; light green), principal component analysis (PCA; light blue), independent 

component analysis (ICA; blue), Diffusion Map (pink), nonnegative matrix factorization 

(NMF; green), Poisson NMF(light orange), zero-inflated factor analysis (ZIFA; light pink), 

zero-inflated negative binomial based wanted variation extraction (ZINB-WaVE; orange), 

probabilistic count matrix factorization (pCMF; light purple), deep count autoencoder 

network (DCA; yellow), generalized linear model principal component analysis 

(GLMPCA; red), multidimensional scaling (MDS; cyan), locally linear embedding (LLE; 

blue green), local tangent space alignment (LTSA; teal blue), Isomap (grey), and uniform 

manifold approximation and projection (UMAP; brown), and t-distributed stochastic 

neighbor embedding (tSNE; dark red). We used log2 count transformation for the subset 

of DR methods that use normalized data. For each data set, we compared the four 

different number of low-dimensional data. The four numbers we used equal to 0.5%, 1%, 

2%, and 3% of the total number of cells. Note that, for tSNE, we only extracted two low-

dimensional components due to the limitation of the tSNE software. 

 

 



Table S1. List of 15 scRNAseq data sets used for benchmarking DR methods through cell clustering. The table 

contains data set ID (1st column), data set name (2nd column), species (3rd column), experimental platform (4th column), 

year of publication (5th column), how the true clusters were determined (6th column), number of genes/transcripts (7th 

column), number of cells (8th column), number of cell types (9th column) and unique molecular identifiers (UMI; 10th 

column). We colored different categories in each column by different colors. 

ID Data set Species Protocol Year Determination # Genes/Transcripts # Cells #Cluster UMI 

GSE111108 FreytagGold human 10xGenomics Chromium  2018 FACS 58,302 925 3 Yes 

GSE115189 GSE115189Silver human 10xGenomics Chromium  2018 clustering 58,302 2,590 11 Yes 

SRP073767 

Zhengmix4eq human 10xGenomics GemCode 2017 FACS 15,568 3,994 4 Yes 

Zhengmix4uneq human 10xGenomics GemCode 2017 FACS 16,443 6,498 4 Yes 

PBMC3k human 10xGenomics GemCode 2017 FACS 58,302 3,205 11 Yes 

PBMC4k human 10xGenomics Chromium  2017 FACS 58,302 4,292 11 Yes 

GEO67835 Darmanis human Smart-Seq2 2017 clustering 22,085 420 4 No 

GSE73727 Pancreatic human Smart-Seq2 2016 FACS 139,918 60 6 No 

GSE84133 Baron human inDrop 2016 clustering 14,878 1,886 13 Yes 

GSE75748 
ChuBatch1 human SMARTer 2016 FACS 19,097 350 5 No 

ChuBatch2 human SMARTer 2016 FACS 19,097 425 6 No 

GSE60361 Zeisel mouse Smart-Seq 2015  clustering 19,972 1,800 7 No 

GSE60749  Kumar mouse Smart-Seq 2014  culture conditions 45,159 246 3 No 

SRP073808 Koh human SMARTer 2016 FACS 48,981 531 9 No 

GSE99254 Guo human Smart-Seq2 2018 FACS 18,178 12,346 25 No 

 



Table S2. List of 15 scRNAseq data sets used for benchmarking DR methods through trajectory inference. The 

table contains data set ID (1st column), data set name (2nd column), species (3rd column), experimental platform (4th 

column), year of publication (5th column), how the true lineage were determined (6th column), number of genes (7th 

column), number of cells (8th column), unique molecular identifiers (UMI; 9th column) and lineage type (10th column). We 

colored different categories in each column by different colors.  

ID Data set Species Platform Year  Determination # Genes # Cells UMI 
Lineage 

Type 

GSE60783 Schlitzer mouse Fluidigm 2015 FACS 4480 238 No Linear 

E-MTAB-3929 Petropoulos human Smart-Seq2 2016 timeseries 8,772 1,289 No Linear 

GSE86146 
LiM human Smart-Seq2 2017 timeseries 4,777 649 No Linear 

LiF human Smart-Seq2 2017 timeseries 5,319 666 No Linear 

GSE87375 
ZhangBeta mouse Smart-Seq2 2017 timeseries 6,138 562 No Linear 

ZhangAlpha mouse Smart-Seq2 2017 timeseries 6,138 322 No Linear 

GSE63818 
GuoF human Tang et. al. 2015 timeseries 8,772 100 No Linear 

GuoM human Tang et. al.  2015 timeseries 8,772 166 No Linear 

GSE59114 
KowalczykYoung mouse Smart-Seq 2015 FACS 2,227 493 No Linear 

KowalczykOld mouse Smart-Seq 2015 FACS 2,815 873 No Linear 

GSE98664 Hayashi mouse RamDA-seq 2018 timeseries 23,658 414 No Linear 

GSE48968 ShalekLPS mouse Smart-seq 2014 timeseries 4,158 504 No Linear 

GSE52529 Trapnell human SMARTer 2014 timeseries 8,772 290 No Linear 

GSE70245 Olsson mouse SMARTer 2016 FACS 3,594 316 No Linear 

GSE119945 Cao mouse Sci-RNA-seq3 2019 timeseries 26,183 2,058,652 Yes Linear 

 



Download links for 15 data sets used in cell clustering: 

FreytagGold:  The data set consists of three human lung adenocarcinoma cell lines, 

HCC827, H1975, and H2228, which were cultured separately and mixed together for 

sequencing [1]. The dataset was sequenced by 10x Genomics Chromium Controller. 

Cell subpopulation information was established by the applying demuxlet (version 0.0.1) 

on single nucleotide variants (SNVs) to explore the genetic difference and then identify 

near absolute truth labels of the cells. Raw counts were downloaded from 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE111108.  

GSE115189Silver: The data set consists of five fresh human peripheral blood 

mononuclear cells (PBMCs) [1]. The dataset was sequenced by 10x Genomics 

Chromium Controller. Cell subpopulation information was established by the applying 

cell labeling approach from 10x Genomics. The cell type labeling obtained through this 

approach has high consistency with literature. Raw counts were downloaded from 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE115189. 

Zhengmix4eq: The data set consists of four pre-sorted cell types (B-cells, naive 

cytotoxic T-cells, CD14 monocytes, regulatory T-cells) that were combined with equal 

proportions, with 1,000 cells per cell type [2]. The data were sequenced by 10x 

Genomics, and the Cell Ranger Single-Cell Software Suite was used to perform sample 

demultiplexing, barcode processing and single-cell 3’ gene counting. The cell type for 

each cell were known through the pre-sorting process and is considered as the 

underlying truth. Raw UMI counts were downloaded from 

https://support.10xgenomics.com/single-cell-gene-expression/datasets. 

Zhengmix4uneq: The data set consists of four pre-sorted cell types (B-cells, naive 

cytotoxic T-cells, CD14 monocytes, regulatory T-cells) that were combined with unequal 

proportions, with 1,000, 500, 2,000, and 3,000 cells for the four cell types, respectively 

[2]. The data were sequenced by 10x Genomics, and the Cell Ranger single cell 

software suite was used to perform sample demultiplexing, barcode processing and 

single-cell 3’ gene counting. The cell type for each cell were known through the pre-

sorting process and is considered as the underlying truth. Raw UMI counts were 

downloaded from https://support.10xgenomics.com/single-cell-gene-expression/datasets. 

PBMC4K:  The data set consists of 11 cell types obtained by in fluorescence-activated 

cell sorting (FACS). The data were generated with an earlier version of the microfluidics 

instrument, the 10x Genomics GemCode Controller. Raw counts were downloaded from 

https://support.10xgenomics.com/single-cell-geneexpression/datasets/1.2.0/pbmc4k.  

PBMC3k: The data set consists of 11 cell types obtained by in fluorescence-activated 

cell sorting (FACS). The data set consists of 11 cell types obtained by in fluorescence-

activated cell sorting (FACS). These 11 cell types include CD14+ Monocyte (446 cells), 



CD19+ B (406 cells), CD34+ (17 cells), CD4+/CD25 T Reg (198 cells), 

CD4+/CD45RA+/CD25- Naive T (242 cells), CD4+/CD45RO+ Memory (465 cells), CD4+ 

T Helper2 (76 cells), CD56+ NK (428 cells), CD8+/CD45RA+ Naive Cytotoxic (510 cells), 

CD8+ Cytotoxic T(398 cells), Dendritic (19 cells). The data were generated with the 

latest instrument, the 10x Genomics Chromium Controller. Raw counts were 

downloaded from https://support.10xgenomics.com/single-cell-gene-

expression/datasets/2.1.0/pbmc4k.  

Darmanis: This data set originally contains 10 distinct cell groups. Clusters 1-8 consist 

of adult brain cells, whereas cluster 9 and 10 consist of fetal brain cells. We excluded 

two mixed groups of cells that is probably due to contamination of each cell with pieces 

of myelin debris or noisy gene expression profile [3], remaining 8 major brain cell types: 

astrocytes (62 cells), oligodendrocytes (38 cells), oligodendrocyte precursor cells (OPCs; 

18 cells), neurons (131 cells), microglia (16 cells), fetal quiescent (110 cells), fetal 

replicating (25 cells) and endothelial (20 cells). First, we used an unbiased approach to 

sort all 466 individual cells into distinct groups defined by the entirety of their molecular 

signatures. Raw count data were downloaded from 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE67835. 

Koh: This data set comprises of 9 different cell types that include H7 hESCs, H7-derived 

anterior primitive streak populations, H7-derived mid primitive streak populations, H7-

derived lateral mesoderm, H7-derived FACS-purified GARP+ cardiac mesoderm, H7-

derived FACS-purified DLL1+ paraxial mesoderm populations, H7-derived day 3 early 

somite progenitor populations, H7-derived dermomyotome populations, and H7-derived 

FACS-purified PDGFRα+ sclerotome populations. RNA was extracted from either whole 

cell populations or alternatively, cell subsets purified by fluorescence activated cell 

sorting (FACS). Raw data can be downloaded from 

https://www.ncbi.nlm.nih.gov/sra?term=SRP073808. In our comparison, we directly 

downloaded the processed data from conquer [4]. 

Baron: This data set characterized pancreatic cells from human donors and was 

sequenced by the inDrop platform. Raw count data were downloaded from 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE84133.  

ChuBatch1: This is the batch 1 part of Chu et al. data [5]. Chu et at al contains four 

lineage-specific progenitor cells derived from human pluripotent stem cells (hPSCs) and 

were sequenced by Fluidigm C1 platform. Raw data was downloaded from 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE75748.  

ChuBatch2: This is the batch 2 part of Chu et al. data [5]. Chu et at al contains four 

lineage-specific progenitor cells derived from human pluripotent stem cells (hPSCs) and 

were sequenced by Fluidigm C1 platform. Raw data was downloaded from 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE75748.  



Pancreatic: This data set contains human islet cells from one human donor [6]. This 

dataset was sequenced by Smart-seq2 and raw data were download from 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE73727. We excluded 

undefined cells in scRNAseq samples and focused on the remaining 60 cells in our 

evaluation. 

Zeisel:  This data set contains cells of the somatosensory cortex and hippocampal CA1 

region from mouse brains and was sequenced by the Fluidigm C1 platform. Raw counts 

were downloaded from http://linnarssonlab.org/cortex/. 

Kumar: This data set contains three populations of mouse embryonic stem cells 

(mESCs): (1) v6.5 mESCs cultured in serum+LIF media (183 individuals); (2) v6.5 

mESCs cultured in 2i+LIF media (94 individuals); (3) Dgcr8-/-mESCs (constructed in a 

v6.5 background), which lack mature miRNAs due to knockout of a miRNA processing 

factor in the cells, are cultured in serum+LIF (84 individuals). Raw count data can be 

downloaded from https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE60749. In 

our experiments, we directly downloaded the processed data from the conquer website 

[4]. 

Guo: This data set contains 25 populations of 12346 T cells from the tumour, adjacent 

normal tissues and peripheral blood from 14 treatment-naïve NSCLC patients [7]. 

Following the original paper, we removed CD4 iNKT, CD4 MAIT, DN diverse, DN iNKT, 

DN MAIT, DP diverse, and other cell subpopulations,  and retained 9055 cells with 16 

cell subpopulations, including CD4_C1-CCR7 (531 cells), CD4_C2-ANXA1 (665 cells), 

CD4_C3-GNLY (433 cells), CD4_C4-CD69 (1084 cells), CD4_C5-EOMES (161 cells), 

CD4_C6-GZMA (668 cells), CD4_C7-CXCL13 (342 cells), CD4_C8-FOXP3 (427 cells), 

CD4_C9-CTLA4 (939 cells), CD8_C1-LEF1 (303 cells), CD8_C2-CD28 (206 cells), 

CD8_C3-CX3CR1 (1192 cells), CD8_C4-GZMK (674 cells), CD8_C5-ZNF683 (832 

cells), CD8_C6-LAYN (493 cells), and CD8_C7-SLC4A10 (105 cells). Raw count data 

can be downloaded from 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE99254.  

Download link for 15 data sets used in trajectory inference: 

In our comparison, all scRNAseq data sets with trajectory information were downloaded 

from https://zenodo.org/record/1443566#.XNV25Y5KhaR [8]. The detailed information of 

each data sets is as follows: 

Schlitzer: This data set contains three cell types at three different developmental stages: 

common dendritic cell progenitor (CDP; 89 cells); macrophage and DC precursor (MDP; 

57 cells); and Pre-DC (92 cell), from the first ontogeny of dendritic cell (DC) development 

in the bone marrow. Raw data can be downloaded from 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE60783.  



Petropoulos: This data set is from a human embryo development study. The data 

includes the sequenced transcriptomes of 1,529 individual cells from 88 human 

preimplantation embryos. The data includes five developmental stages: E3 (81 cells), E4 

(190 cells), E5 (377 cells), E6 (415 cells), and E7 (466 cells).The read count expression 

matrices for all cells is available on ArrayExpress: 

https://www.omicsdi.org/dataset/arrayexpress-repository/E-MTAB-3929.  

Trapnell: This data set contains human skeletal muscle myoblasts cells collected over a 

time-course of serum-induced differentiation. At four different time points, cells were 

captured and processed with the Fluidigm C1 platform followed by Illumina sequencing. 

The underlying lineage in the data is known and was determined based on the collection 

time for the cells. The raw data is available at 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE52529. 

Olsson: This data set was performed on stem/multipotent progenitors (LSK; lin−Sca1+c-

Kit+; 92 cells), common myeloid progenitors (CMP; 92 cells), and granulocyte monocyte 

progenitors (GMP; 57 cells) that included granulocytic precursors. To isolate LSK, CMP 

and GMP, lineage stained cells were stained with: Streptavidin APC-Cy7 (Becton, 

Dickinson and Company), CD16/32-PerCp-ef710 (clone 93, eBioscience), CD117-APC 

(clone 2B8, Becton, Dickinson and Company), Sca-1-Pe-Cy7 (clone D7, Becton, 

Dickinson and Company) and CD34-BV421 (clone RAM34, Becton, Dickinson and 

Company). GMP and CMP gates were set using CD34 FMO. The data set can be 

downloaded from https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE70245.  

LiM: This data set was collected from male fetal gonads with intact morphology and 

reasonable cell viability from embryos spanning a time period of 4 weeks (4W) to 26W. 

The stages of human embryos in this study were calculated from the estimated 

fertilization time, rather than last menstruation bleeding time. The clinicians who 

obtained the samples made this determination. The number of replicates for each 

developmental stage was no more than three. In total, 12 male embryos were collected: 

21W samples had three biological replicates; 10W, 19W samples each had two 

biological replicates; and 4W, 9W, 12W, 20W and 25W each had one biological replicate. 

Raw data can be downloaded from 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE86146.  

LiF: This data set was collected from female fetal gonads with intact morphology and 

reasonable cell viability from embryos spanning 4W to 26W. The stages of human 

embryos in this study were calculated from the estimated fertilization time, rather than 

last menstruation bleeding time. The clinicians who obtained the samples made this 

determination. The number of replicates for each developmental stage was no more 

than three. In total, 17 female embryos were in this study: 5W, 18W, 20W, 23W and 

24W samples had two biological replicates; and 7W, 8W, 10W, 11W, 12W 14W and 



26W had one biological replicate. Raw data can be downloaded from 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE86146.  

ZhangBeta: This data set contains mouse pancreatic beta cells collected from seven 

developmental stages. The overall goal of this study was to define the roadmaps for 

pancreatic β-cell development. Specifically, we performed single-cell RNAseq at various 

developmental stages of E17.5, P0, P3, P9, P15, P18 and P60 of β-cells. Cells are 

sorted through FACS and followed by single-cell RNAseq using SMART-seq2. The 

lineage was determined based on the cell collection time. The raw data is available at 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE87375.  

ZhangAlpha: This data set contains mouse pancreatic alpha cells collected from six 

developmental stages. The overall goal of this study was to define the roadmaps for 

pancreatic α-cell development. Specifically, we performed single-cell RNAseq at various 

developmental stages of E17.5, P0, P9, P15, P18 and P60 of α- cells. Cells are sorted 

through FACS and followed by single-cell RNAseq using SMART-seq2. The lineage was 

determined based on the cell collection time. The raw data is available at 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE87375.  

GuoF: This data set contains human female primordial germ cells collected at five 

different time points. Cells are sorted through magnetic-activated cell sorting (MACS) or 

FACS and followed by scRNAseq using a modified single-cell cDNA amplification 

method [9] . The lineage was determined based on the cell collection time. The raw data 

is available at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63818. 

GuoM: This data set contains human male primordial germ cells collected at five 

different time points. Cells are sorted through magnetic-activated cell sorting (MACS) or 

FACS and followed by single-cell RNAseq using a modified single-cell cDNA 

amplification method [9]. The lineage was determined based on the cell collection time. 

The raw data is available at 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63818  

KowalczykYoung: This data set contains mouse long-term hematopoietic stem cells, 

short-term hematopoietic stem cells and multi-potent progenitors from young mice (2~3 

months of age). Cells are sorted through FACS and followed by single-cell RNAseq 

using Smart-seq. The lineage was determined based on the FACS. The raw data is 

available at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE59114.  

KowalczykOld: This data set contains mouse long-term hematopoietic stem cells, short-

term hematopoietic stem cells and multi-potent progenitors from old mice (>20 months). 

Cells are sorted through FACS and followed by scRNAseq using Smart-seq. The lineage 

was determined based on FACS. The raw data is available at 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE59114. 



Hayashi: The data set is from a cell differentiation time series study with RamDA-seq 

samples.  The data contains 414 RamDA-seq samples of mouse ES cells that were 

collected at 0 (89 cells), 12 (67 cells), 24 (89 cells), 48 (79 cells), and 72 (90 cells) hours 

after the induction of cell differentiation into PrE cells. The samples were sequenced by 

Smart-Seq technology. The counts data can be downloaded from 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE98664. 

ShalekLPS: This data set contains mouse dendritic-cells along a time-course of LPS-

stimulation. At five different time points, cells were captured and processed with the 

Fluidigm C1 platform followed by scRNAseq using Smart-seq. The lineage was 

determined based on the cell collection time. The raw data is available at 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE48968. 

Cao: This data set contains over 2 million cells derived from 61 mouse embryos staged 

between 9.5 and 13.5 days of gestation, including 0.8× at E9.5 (200,000 cells per 

embryo; 152,000 profiled across all replicates), 0.3× at E10.5 (1.1 million cells per 

embryo; 378,000 profiled), 0.2× at E11.5 (2.6 million cells per embryo; 616,000 profiled), 

0.08× at E12.5 (6 million cells per embryo; 475,000 profiled) and 0.03× at E13.5 (13 

million cells per embryo; 437,000 profiled) [10]. In our experiments, we randomly 

selected 10,000 cells from each stage to perform the trajectory analysis. The raw data is 

available at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE119945. 
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