
Supplementary Figure 1. PQLseq produces accurate heritability estimates 

regardless of the mean read count � in simulated BSseq and RNAseq data. The 

heritability estimations are from PQLseq (orange), MACAU (blue), MALAX (purple) and 

GEMMA (red) across a range of � (5, 10, 19 in BSseq simulations;10, 50 and 100 in 

RNAseq simulations). (A): ℎ� � 0.1 and 
� � 1.2 in BSseq; (B): ℎ� � 0.3 and 
� � 1.2 in 

BSeq; (C): ℎ� � 0.1  and 
� � 0.25 in RNAseq; (D): ℎ� � 0.3  and 
� � 0.25 in RNAseq. 

The other parameter setting is � � 100. The horizontal orange dashed line represents the 

true heritability. 

 

  



Supplementary Figure 2. PQLseq produces accurate heritability estimates 

regardless of the over-dispersion parameter �� in simulated BSseq and RNAseq 

data. The heritability estimations are from PQLseq (orange), MACAU (blue), MALAX 

(purple), and GEMMA (red) across a range of 
� (0.5, 1.2, and 2 in BSseq simulations; 

0.1, 0.25 and 0.5 in RNAseq simulations). (A): ℎ� � 0.1 and � � 19 in BSseq; (B): ℎ� � 0.3 

and � � 19 in BSeq; (C):  ℎ� � 0.1  and � � 10 in RNAseq; (D):  ℎ� � 0.3  and � � 10 in 

RNAseq. The other parameter setting is � � 100. The horizontal orange dashed line 

represents the true heritability. 

 

  



Supplementary Figure 3. Estimation of heritability ℎ� and dispersion parameter 


� by PQLseq under the null simulations with varying sample sizes. The results are 

based on RNAseq based simulations with varying sample sizes (n = 10 to 500). A and B: 

heritability estimates (A) and dispersion parameter estimates (B) versus sample size 

under the setting of ℎ�  = 0.1 and  
�  = 0.25; C and D: heritability estimates (C) and 

dispersion parameter estimates (D) versus sample size under the setting of ℎ� = 0.3 and  
� = 0.25. 

 

  



Supplementary Figure 4. PQLseq produces accurate heritability estimates under 

different genetic architectures. The SNP heritability estimations are from PQLseq 

(orange), MACAU (blue), GEMMA (red), and BSLMM (purple) under the null simulations 

for RNAseq based simulation. Parameters used include 
� = 0.25, PVE = 0.25, � = 465, 

together with ℎ� = 0.1 and 2% causal SNPs (A); ℎ� = 0.1 and 10% causal SNPs (B); ℎ� = 

0.1 and 100% causal SNPs (C); ℎ� = 0.3 and 2% causal SNPs (D); ℎ� = 0.3 and 10% 

causal SNPs (E); ℎ� = 0.3 and 100% causal SNPs (F).  

 



Supplementary Figure 5. PQLseq produces calibrated p-values regardless of the 

mean read count �. Genomic control factors are from PQLseq (orange), MACAU (blue), 

MALAX (purple), and GEMMA (red) across a range of gene expression level � under the 

null simulations are shown for BSseq based simulation (A) or RNAseq based simulation 

(D). Parameters used include 
� = 1.2 and � = 100 for BSseq based simulations and 
� 

= 0.25 and � = 100 for RNAseq simulations. QQ-plots further compare the expected and 

observed p-values (aggregates the results from 10 simulated datasets) distributions 

generated from different methods under the null for � = 5 (B) and � = 10 (C) in BSseq 

based simulations, and for � = 50 (E) and � = 100 (F) in RNAseq based simulations. ��� 

is the genomic control factor. 

 



Supplementary Figure 6. PQLseq produces calibrated p-values regardless of the 

over-dispersion parameter ��. Genomic control factors from PQLseq (orange), MACAU 

(blue), MALAX (purple), and GEMMA (red) across a range of overdispersion paratemer 
� under the null simulations are shown for BSseq based simulation (A) or RNAseq based 

simulation (D). Parameters used include � = 19 and � = 100 for BSseq based simulations 

and � = 10 and � = 100 for RNAseq simulations. QQ-plots further compare the expected 

and observed p-values (aggregates the results from 10 simulated datasets) distributions 

generated from different methods under the null for 
� = 0.5 (B) and 
� = 2 (C) in BSseq 

based simulations, and for 
� = 0.1 (E) and 
� = 0.5 (F) in RNAseq based simulations. ��� is the genomic control factor. 

 

  



Supplementary Figure 7. p-values from MALAX are enriched near one in BSseq 

based simulations. Histograms of p-values by MALAX (purple; A, B, C) or p-values by 

by PQLseq (orange; D, E, F) aggregated from 10 null simulation replicates in BSseq based 

simulations. The results are based on different samples sizes: � = 200 (A and D), � = 300 

(B and E), or � = 500 (C and F). The other parameters are ℎ� � 0.1, 
� � 2, and � = 19. 

 

  



Supplementary Figure 8. PQLseq versus MACAU in simulated BSseq and RNAseq 

data. The p-values from the two methods are highly correlated in BSseq simulations with � = 50 (A) and � = 500 (B). The p-values from the both methods are highly correlated in 

RNAseq simulations with � = 50 (C) and � = 500 (D). 

 

  



Supplementary Figure 9. PQLseq exhibits similar power as MACAU in BSseq and 

RNAseq based power simulations across a range of sample sizes and heritability 

values. The power results are obtained for PQLseq (orange), MACAU (blue), MALAX 

(purple) and GEMMA (red) based on 5% FDR in both BSseq based simulations (A, B, C) 

and RNAseq based simulations (D, E, F). Results are shown under different heritability 

values: ℎ2 = 0 (A and D), ℎ2 = 0.1 (B and E), or ℎ2=0.3 (C and F). The other parameter 

settings in the simulations are � = 19, PVE = 0.15 and 
2 = 1.2 for BSseq simulations; � 

= 10, PVE = 0.25 and 
2 = 0.25 for RNAseq simulations.  

 



Supplementary Figure 10. PQLseq exhibits similar power as MACAU in BSseq and 

RNAseq based power simulations across a range of PVE and heritability values. 
The power results are obtained for PQLseq (orange), MACAU (blue), MALAX (purple) and 

GEMMA (red) based on 10% FDR in both BSseq based simulations (A, B, C) and RNAseq 

based simulations (D, E, F). Results are shown under different heritability values: ℎ2 = 0 

(A and D), ℎ2 = 0.1 (B and E), or ℎ2=0.3 (C and F). The other parameter settings in the 

simulations are � = 19, n = 100 and 
2 = 1.2 for BSseq simulations; � = 10, n = 100 and 
2 = 0.25 for RNAseq simulations. 

 



Supplementary Figure 11. PQLseq exhibits similar power as MACAU in BSseq and 

RNAseq based power simulations across a range of mean read counts �  and 

heritability values. The power results are obtained for PQLseq (orange), MACAU (blue), 

MALAX (purple) and GEMMA (red) based on 10% FDR in both BSseq based simulations 

(A, B, C) and RNAseq based simulations (D, E, F). Results are shown under different 

heritability values: ℎ2 = 0 (A and D), ℎ2 = 0.1 (B and E), or ℎ2=0.3 (C and F). The other 

parameter settings in the simulations are PVE = 0.25, n = 100 and 
2 = 1.2 for BSseq 

simulations; PVE = 0.25, n = 100 and 
2 = 0.25 for RNAseq simulations.  

 

  



Supplementary Figure 12. PQLseq exhibits similar power as MACAU in BSseq and 

RNAseq based power simulations across a range of over-dispersion variance ��  
and heritability values. The power results are obtained for PQLseq (orange), MACAU 

(blue), MALAX (purple) and GEMMA (red) based on 10% FDR in both BSseq based 

simulations (A, B, C) and RNAseq based simulations (D, E, F). Results are shown under 

different heritability values: ℎ2 = 0 (A and D), ℎ2 = 0.1 (B and E), or ℎ2=0.3 (C and F). The 

other parameter settings in the simulations are � = 19, PVE = 0.25 and � = 100 for BSseq 

simulations; � = 10, PVE = 0.25 and � = 100 for RNAseq simulations.  

 

  



Supplementary Figure 13. Comparison of gene expression heritability estimates in 

the Hutterites RNAseq data. A shows that gene expression heritability estimates from 

MACAU are generally higher than that from PQLseq. B that gene expression heritability 

estimates from GEMMA are generally lower than that from PQLseq. 

 



Supplementary Figure 14. Histogram of p-values from different methods for 

detecting differentially expressed genes in the Hutterites RNAseq data. The p-values 

are obtained from PQLseq (A), MACAU (B), and GEMMA (C) for detecting differentially 

expressed genes between genders.  

 

  



Supplementary Figure 15. Heritability estimates from PQLseq in the Hutterites 

RNAseq data after adjusting for different numbers of gene expression principal 

components (PCs). Medium heritability estimates initially increase after adjusting for an 

increasing number of gene expression PCs, reach a peak, and gradually reduce 

afterwards.  

 

  



Supplementary Figure 16. -log10(p-values) from PQLseq for detecting differentially 

expressed genes in different genders are highly correlated with that from MACAU 

in the Hutterites RNAseq data.  

 

  



Simulations 

We performed simulations to compare different methods. To make simulations as realistic 

as possible, we simulated either RNAseq data or BSseq data based on parameters 

inferred from two published data sets that include a RNAseq data set (Tung, et al., 2015) 

and a BSseq data set (Lea, et al., 2015). In the simulations, we varied the sample size (�) 

(� = 50, 100, 200, 300, or 500). To construct a relatedness matrix � in each of these 

sample simulations, we first obtained a real relatedness matrix from the published data 

(Lea, et al., 2015). We then constructed the relatedness matrix � by filling in its off-

diagonal elements with randomly drawn off-diagonal elements from the real relatedness 

matrix following (Lea, et al., 2015). In cases where the resulting � was not positive definite, 

we used the nearPD function in R to find the closest positive definite matrix as the final �. 

Besides � and �, we also simulated a continuous predictor variable � from a standard 

normal distribution, and normalized the predictor � to have a zero mean and unit variance.  

For RNAseq based simulations, in each simulation replicate, we simulated the total read 

count ��  for each individual from a discrete uniform distribution with a minimum 

(=1,770,083) and a maximum (=9,675,989) total read count (i.e., summation of read 

counts across all genes) equal to the minimum and maximum total read counts in the 

published RNAseq data (Tung, et al., 2015). We simulated 10,000 gene expression values 

and considered two general simulation settings. In the null settings, we simulated 10,000 

non-differentially expressed (non-DE) genes to examine the gene expression heritability 

estimation accuracy and type I error control. In the alternative settings we simulated 1,000 

DE genes and 9,000 non-DE genes to examine power. These non-DE or DE genes are 

simulated using the following procedure. Specifically, for each gene in turn, we simulated 

the genetic random effects � from a multivariate normal distribution with covariance �. 

We simulated the environmental random effects �  based on independent normal 

distributions. We then scaled the two sets of random effects to ensure a fixed value of 

heritability (ℎ� � ����
��������� � 0.0 or 0.1 or 0.3) and a fixed value of over-dispersion variance 

(  
� �  �!� +  �#� �  0.1, 0.25 or 0.5) where the function  (•) denotes the sample 

variance. A heritability value of 0.1 and 0.3 correspond approximately to the median and 

upper 15% percentile of gene expression heritability estimates from the RNAseq data 

(Tung, et al., 2015). An over-dispersion variance value of 0.1, 0.25 and 0.5 correspond to 

approximately the lower quartile, median, and upper quartile of the over-dispersion 

variance inferred from the RNAseq data (Tung, et al., 2015). Afterwards, for non-DE genes, 

the genetic effects �, environmental effects �, and an intercept (�� were then summed 

together to yield the latent variable log�'� � � + � + � . Here, the intercept � � log ��
()� 

ensures an average gene count of c = 10, 50, or 100, where �) is the average total read 

count across individuals. For DE genes, we used log�'� � � + �* + � + � to yield the 

latent variable, where * ~ �,0, 
.�/ and 
.� is set to ensure a fixed proportional of variance 

explained (PVE). That is, 
.� � 0�1 23
�450�1�����, where PVE values were fixed to be 15%, 25%, 

or 35% to represent different effect sizes. Finally, we simulated the read counts based on 

a Poisson distribution with the Poisson rate being a product of the total read counts �� and 

the latent variable ��; that is, 6�~789������ for the 9'th individual. With the above procedure, 

we first simulated data under n = 100, ℎ� � 0.1 and 
� � 0.25 (and PVE = 0.25 for DE 



genes). We then varied one parameter at a time to generate different simulation scenarios. 

In each scenario, conditional on the sample size, total read counts etc., we performed 10 

simulation replicates, each consisting of 10,000 genes.  

For BSseq based simulations, in each simulation replicate, we simulated methylation 

values for 10,000 sites and considered two general simulation settings. In the null settings, 

we simulated 10,000 non-differentially methylated (non-DM) sites to examine the 

methylation level heritability estimation accuracy and type I error control. In the alternative 

settings we simulated 1,000 DM sites and 9,000 non-DM sites to examine power. These 

non-DM or DM sites are simulated using the following procedure. Specifically, for each 

site in turn, we simulated total read counts :� for each individual 9 from a negative binomial 

distribution :� ~ �;��, <� with � = 18.80 and median < = 2.49; the two parameter values 

correspond to the median estimates from the published BSseq data (Lea, et al., 2015). 

We then simulated the genetic random effects � and the environmental random effects � 

given a fixed heritability ℎ� (0.1 or 0.3) and a fixed value of over-dispersion variance (
� � 

0.5, 1.2, or 2). Again, the over-dispersion variance values correspond to the lower quartile, 

median, and upper quartile of the over-dispersion variance inferred from the BSseq data 

(Lea, et al., 2015). For non-DM sites, the genetic effects �, environmental effects �, and 

an intercept (�) were then summed together to yield the latent variable logit�?� � � + � +� . Here, � � logit� �@̅ �  ensures an average number of methylated read counts being 

approximately B �5, 10 or 19, where :̅ is the average total read count for the given site 

across individuals. For DM sites, we use logit�?� � � + �* + � + � to yield the latent 

variable, where * ~ �,0, 
.�/ and 
.� is set to ensure a fixed PVE. That is, 
.� � 0�1 23
�450�1����� , 

where PVE values were set to be 15%, 25%, or 35% to represent different effect sizes. 

Finally, we simulated the methylated read counts based on a binomial distribution with a 

rate parameter determined by the total read counts :� and the methylation proportion C�; 
that is, 6�~;9��:�, C�� for the 9'th individual. With the above procedure, we first simulated 

data under n = 100, ℎ� � 0.1 and 
� � 1.2 (and PVE = 0.15 or PVE = 0.25 for DM sites). 

We then varied one parameter at a time to generate different scenarios. In each scenario, 

conditional on the sample size, total read counts etc., we performed 10 simulation 

replicates, each consisting of 10,000 sites.  

 

We compared four different methods (PQLseq, MACAU, GEMMA, and MALAX) in the 

BSseq based simulations, and compared three different methods (PQLseq, MACAU and 

GEMMA) in the RNAseq based simulations as MALAX is only applicable for BSseq data. 

For GEMMA, we normalized data following previous recommendations (Lea, et al., 2015; 

Sun, et al., 2017). Specifically, for RNAseq data, for each gene in turn, we divided the 

number of read counts mapped to the gene by the total read depth, and quantile 

transformed the normalized data to a standard normal distribution. For BSseq data, we 

used “M” value transformation following (Du, et al., 2010) by dividing the number of 

methylated reads by the number of unmethylated reads followed by a log2-transformation. 

The normalized data is D8!2 E F�GHIJKG�L @�KLM�K
NOF�GHIJKG�L @�KLM�KP , where Q  = 0.01 to avoid log 

transforming zero values.  

 



 

Real Data Application 

The published RNAseq data was collected from lymphoblastoid cell lines (LCLs) of 431 
individuals from the Hutterites population in South Dakota, which is an isolated founder 
population (Cusanovich, et al., 2016). Libraries were created using the TruSeq Library Kit 
and samples were sequenced an Illumina HiSeq 2000 (50bp single end reads) in indexed 
pools of 12. Reads were trimmed for adaptors using Cutadapt (reads less than 5 bp 
discarded) then remapped to hg19 using bowtie indexed with gencode version 19 gene 
annotations (Langmead, et al., 2009; Martin, 2011). To remove mapping bias, autosomal 
reads were processed through WASP (van de Geijn, et al., 2015). Gene counts were 
quantified using HTSeq-count (Anders, et al., 2015) and verifyBamID was used to identify 
sample swaps (Jun, et al., 2012). Following these mapping and quality control steps, we 
obtained expression count measurements for 23,367 genes. We kept genes that have 
read counts greater than five in at least two individuals to focus on a final set of 17,312 
genes. We also used the Hutterites pedigree information to compute the kinship 
coefficients between pairs of individuals and used them as the � matrix in the model. We 
then fitted a PMM for each gene in turn without any covariates to estimate gene expression 
heritability. For DE analysis, we used sex as the predictor variable (i.e. male vs female) to 
identify sex-associated genes. To compare performance among different methods for DE 
analysis, we permuted phenotype sex 20 times to obtain a null distribution. We used the 
null distribution to estimate the false discovery rate (FDR). Finally, to explore the influence 
of batch effects for heritability estimates in PQLseq, we extracted the top principal 
components (PCs) from the gene expression matrix and treated them as covariates in the 
model. We considered including a different number of top gene expression PCs that range 
from 2 to 200. 

  



Inference for Generalized Mixed Models 

Previously, we have developed a method, MACAU, that uses a Markov chain Monte Carlo 

(MCMC) sampling-based strategy to perform inference. In particular, we draw posterior 

samples from the GLMM and rely on the asymptotic normality of both the likelihood and 

the posterior distributions (Schwartz, 1965) to obtain the approximate maximum likelihood 

estimate *RS and its standard error se(*RS). With  *RS and se(*RS), we construct approximate 

Wald test statistics and compute p-values for hypothesis testing. MACAU takes advantage 

of an auxiliary variable representation of the Poisson or binomial likelihood (Fruhwirth-

Schnatter and Fruhwirth, 2010; Fruhwirth-Schnatter and Wagner, 2006; Scott, 2011) and 

recent linear algebra innovations for fitting linear mixed models (Lippert, et al., 2011; Zhou 

and Stephens, 2012; Zhou and Stephens, 2014). As a result, compared with a standard 

MCMC method, MACAU reduces the computational complexity of each MCMC iteration 

from cubic to quadratic with respect to the sample size, and is orders of magnitude faster 

than the popular Bayesian software MCMCglmm (Hadfield, 2010). However, despite the 

improvement, the early versions of MACAU are still computationally inefficient and are not 

readily applicable to large-scale genomic sequencing studies.  

Our new method and software implementation, PQLseq, takes an alternative route for 

GLMM inference through the penalized quasi-likelihood (PQL) approach (Breslow and 

Clayton, 1993). Briefly, PQLseq employs an iterative numerical optimization procedure. In 

each iteration, we introduce a set of pseudo-data TU to replace the originally observed data T. The pseudo-data TU is obtained based on a second order Taylor expansion using the 

conditional distribution 7�6�|�, �� using the first and second order moments E�6�|�, �� and  �6�|�, ��, both evaluated at the current estimates of the fixed coefficients as well as the 

random effects � and �. With the pseudo-data, the complex GLMM likelihood function for 

the original data T is replaced by a much simpler LMM likelihood function for the pseudo-

data TU, thereby alleviating much of the computational burden associated with GLMM. With 

pseudo-data TU, we can perform inference and update parameters using the standard 

average information (AI) algorithm for LMMs (Chen, et al., 2016; Gilmour, et al., 1995; 

Yang, et al., 2011). By iterating between the approximation step of obtaining the pseudo-

data TU and the inference step of updating the parameter estimates via the AI algorithm, 

PQLseq allows us to perform inference in a computationally efficient fashion.  

Below, we describe the estimation and inference procedure in detail. To facilitate 

description, we introduce X as the � by B matrix of covariates, and Y as the �-vector of 

the predictor variable of interest.  

First, observations 6� �9 � 1, 2, ⋯ , ��  are independent conditional on the unobserved 

random effects [ � � + �  and the fixed effects X\ + Y* , with conditional mean E�6�|[, ], *� � �� � !54�^_̀ ] + a�* + b��  and conditional variance V�6�|[, ], *� � d���� , 

where !�∙� is the usual link function (i.e. log link for PMM and logit link for BMM) and  d�∙� 

is the variance function (i.e. d�f� � f for the PMM and BMM). We use these two conditional 

moments to obtain the quasi-likelihood for 9-th individual, gD��], *|[U� � h Ii5G
j�G�kiIi lf, which 

serves as an approximation for the conditional likelihood. The joint likelihood function can 

thus be approximated by the joint quasi-likelihood function 



gD�], *, 
�, ℎ�� � log m no gD��[, ], *�O

�p4
q 7�[|
�, ℎ��l[. 

We use Laplace approximation to further approximate the above function and obtain  

gDr �], *, 
�, ℎ�� � 4
� log|st + u| + ∑ gD��[U, ], *� − 4

�O�p4 [Uxs54[U,             (1) 

where s � 
�ℎ�y + 
��1 − ℎ��u , [U � argmax[ E∑ gD��], *|[� − 4
�O�p4 [xs54[P  and t �

diag�1 !′����⁄ � is a diagonal weight matrix.  

We treat the approximated quasi-likelihood function gDr  in equation (1) as the target 

function. And we obtain estimates for �[, ], *� and (
�, ℎ�) alternately from equation (1). 

Specifically, we first obtain estimates for �[, ], *� conditional on the current estimates of 

(
�, ℎ�). To do so, following (Breslow and Clayton, 1993; Gilmour, et al., 1995), we assume 

that the iterative weights vary slowly with respect to the conditional mean; that is 

�t��� ≈ 0. 
We then obtain the first order derivatives with respect to either �], *� or [, and set the two 

first order derivatives to zero; that is 

�X, ��xt∆�T − �� � �,                     (2) 

t∆�T − �� − s5�[ � �,                    (3) 

Where � � �μ4, ⋯ , μ�� and ∆� diag�!′�����. 
We now define the pseudo-data 

�r � �� + !������6� − ���,                   (4) 

and our equation (2) becomes 

� � s�54 ��r − �X, �� E]*P�,               (5) 

where � � t54 + s . Substituting equation (5) into equation (3), we can obtain the 

estimates  

                     �]�*R� �  ��X, ��x�54�X, ���54�X, ��x�54�r,          (6) 

and 

                                          �� � s�54 ��r − �X, �� �]�*R��,              (7) 

Both are conditional on the variance component estimates (
�, ℎ�) 

Next, we obtain estimates for the variance components (
�, ℎ�) conditional on the current 

estimates of �[, ], *�. To do so, we first define the transformed variance components �4 �




�ℎ� and τ� � 
��1 − ℎ��. We then integrate out the fix effects ] and * in equation (1) to 

obtain the restricted likelihood function as 

gDr ���4, τ�� � B� − 12 log|�| − 12 log|�X, ��x�54�X, ��| − 12 �rx��r, 
where � �  �54 − �54�X, ��x,�X, ��x�54�X, ��/54�X, ���54, and  B� is a constant. We 

use the AI algorithm to obtain variance component estimates. In particular, we obtain the 

first derivatives as 

��J ¡,23,H3/
�¢£ � 4

� ¤�rx�y��r − f:��y�¥,   ��J ¡,23,H3/
�¢3 � 4

� ¤�rx�u��r − f:��u�¥, 
and the second derivatives as 

�3�J ¡,23,H3/
�¢£�¢£ � 4

� f:�y�y�� − �rx�y�y��r ,  
�3�J ¡,23,H3/

�¢£�¢3 � 4
� f:�y�u�� − �rx�y�u��r, 

�3�J ¡,23,H3/
�¢3�¢3 � 4

� f:�u�u�� − �rx�u�u��r ,       
�3�J ¡,23,H3/

�¢3�¢£ � 4
� f:�u�y�� − �rx�u�y��r. 

The second derivatives constitute the observed information matrix. Because the elements 

in the expected information matrix are 

¦ ��3�J ¡,23,H3/
�¢£�¢£ � � − 4

� f:�y�y�� ,  ¦ ��3�J ¡,23,H3/
�¢£�¢3 � � − 4

� f:�y�u��, 
¦ ��3�J ¡,23,H3/

�¢3�¢3 � � − 4
� f:�u�u�� ,       ¦ ��3�J ¡,23,H3/

�¢3�¢£ � � − 4
� f:�u�y��, 

we can obtain the average information (AI) matrix as an average of the above two matrices; 

that is 

§u � ��rx�y�y��r �rx�y�u��r�rx�u�y��r �rx�u�u��r �. 
With the first and second order derivatives, we can perform Newton-Raphson update with 

the AI algorithm and obtain estimates for (�4, ��), which in turn leads to estimates of (
�, ℎ�). 

As a summary, PQLseq implements the PQL algorithm that consists of the following steps: 

1. Initialize the parameters, ]�¨�, *�¨�, ©�¨� � E�4�¨�, ���¨�Px, and obtain the pseudo-data 

�r�¨� as in equation (4). Set f � 1. 

2. Update ©�G� � ©�G54� + §u54 E��J¡,23,H3/
�© P; 

3. Update ]�G�, *�G� and [�G� with ©�G� and �r�G54� as in equations (6) and (7); 

4. Update �r�G� using the ]�G�, *�G� and [�G� as in equation (4); 

5. Set f � f + 1, and repeat steps 2-4 until convergence. 

Once we obtain parameter estimates �], *, 
�, ℎ��, we can construct the Wald test based 

on 

*R � ��x�ª��54�x�ª�r and Var,*R/ � ��x�ª��54, 



where � �  �54 − �54Xx�Xx�54Xx�54Xx�54.  
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