
Supplementary Text 
 

1. Likelihood Approximation for Homozygous Individuals 

 

Here, we provide details on the approximation used for homozygous individuals. All notations 

follow the main text. Recall that we denote �� and �� as the methylated read count and total read 

count for ith individual, for � = 1, ⋯ , 	. We denote the corresponding read counts mapped to the 

haplotype of the two alleles of ith individual as ��
 and ��
, for � = 1 or 2; thus we have �� = ��� +��� and �� = ��� + ���. Recall that, for homozygous individuals, we derive a model on �� and �� by 

summing over all possible values of ��
 and ��
: 
 ����|�� , ���, ���� = � � �����|���, �������� − ���|�� − ���, ���������|�����

�����
��� ����,���

����� ,  

(1) 

where �����|���, ���� follows a binomial distribution ���~!�	����, ����; ���� − ���|�� − ���, ���) follows 

a binomial distribution �� − ���~!�	(�� − ���, ���); and �����|��� follows a binomial distribution ���~!�	���, 0.5� . Here, ���  and ���  are conditionally independent given ���  and ��� , though ��� 

and ��� are correlated with each other. To ensure scalable computation, we approximate the above ����|�� , ���, ���� using a binomial mixed model in the following simple form: ��~!�	���, �%��,   �2� 

where �%�  is a mean that depends on ���  and ��� , and thus is a function of 

(', (, )��, )��, *�, +� , ,��, ,�� ). We obtain an estimate of �%�  by matching the first moment in the 

likelihood function defined by equation (2) to the first moment in the likelihood function defined 

by equation (1). Specifically, the expectation of �� under equation (1) can be expressed as: -���� = -���� + ���� = -.-���� + ���|���, ����/ = �� ��1 + ��22  . 
Therefore, by matching moments, we have �%� = ���� + ����/2 = �*1��' + )��( + *� + +� + ,��� + *1��' + )��( + *� + +� + ,����/2, �3� 

 

with �+� + ,��+� + ,���~3�0, �45� + 46�� 71 88 19�, 8 = 45�45� + 46�, 
 

where ' is the intercept; )�
 is the lth allele type for ith individual for the SNP of interest ()�
 = 0 

or 1, corresponding to the reference allele and alternative allele, respectively); (  is the 

corresponding allele/genotype effect size; *� represents the genetic background/polygenic effect 

of ith individual; +�  represents the common individual-level environmental effect that varies 

across individuals but is shared between the two alleles within the same individual; ,�
 represents 

the residual error and is used to account for independent environmental noise that varies across 

both individuals and alleles; *�∙� denotes the logit link function. 

 

Because we focus on homozygous individuals where )�� = )�� = )�, we denote ;� = ' + )�( +*� + +� + �,�� + ,���/2 , which is the average of ' + )��( + *� + +� + ,��  and ' + )��( + *� ++� + ,��. Due to the *1� function, equation (3) is not in an easy-to-evaluate form. Instead, we 

further approximate each term in equation (3) through a first order Taylor expansion at ;�: 



*1��' + )��( + *� + +� + ,��� ≈ ,=>,=> + 1 ?1 + ,�� − ,��2,=> + 1 @, 
*1��' + )��( + *� + +� + ,��� ≈ ,=>,=> + 1 ?1 + ,�� − ,��2,=> + 1 @. 

Therefore, we have �%� ≈ ,=>,=> + 1, 
or equivalently *��%�� ≈ ;� = ' + )( + *� + +� + ,�� + ,��2  �5� 

for homozygous individuals. Note the above equation (5) holds exactly for heterozygous 

individuals, since we have *���
� = ' + )�
( + *� + +� + ,�
 for each allele of the heterozygous 

individuals (main text equation (2)). Subsequently, we can define an approximate background 

heritability as ℎ� = 4B�4B� + 45� + 46�/2.    �6� 

 

 

 

2. IMAGE Inference Algorithm 

 

For homozygous individual �, if we denote the random effects for individual � as D� = *� + +� +6��E6�F� , we have: ��~ !�	���, �G��, logit��G�� = ' + )�( + D�.  
 

�7� 

For heterozygous individual �, the corresponding model is as follows: 

 ��
~ !�	����, ����, logit����� = ' + )��( + D��, � = 1,2. �8� 
  

We treat the data for a homozygous individual, ���, ���, as one observation. We treat the data for a 

heterozygous individual ����, ���, ���, ����  as two observations �����, ����, ����, ���� ). Given 	� 

homozygous individuals (both types of homozygotes) and 	�  heterozygous individuals, we 

have   	O = 	� + 2	�  observations in total. To facilitate algebra derivation, we ordered 

observations by listing homozygous observations first, followed by heterozygous observations. 

The first and second moments in the likelihood functions defined in equations (7) and (8) can be 

written in vector and matrix forms as: 

 -.*�P�/ = ' + Q(, 
R.*���/ = 4B� S TU�U� TU�UF ⊗ [1 1]TUFU� ⊗ Y11Z TUFUF ⊗ Y1 11 1Z[ +45� S\U�×U� ^U�×UF^UF×U� \UF×UF ⊗ [1 11 1][ + 46� _12 \U�×U� ^U�×UF^UF×U� \UF×UF ⊗ [1 00 1]`, �9� 

where both *�P�  and Q  are 	O  dimensional vectors by stacking the corresponding values from 

homozygous observations and heterozygous observations; TU�U� , TUFUF , and  TU�UF  are the 

corresponding kinship matrices computed among homozygous observations, among heterozygous 



observations, and between homozygous and heterozygous observations, respectively; and ⊗ 

denotes a Kronecker product.   

 

We denote b = c + d + e, as the 	O-vector of random effects. Our likelihood for all observations 

requires integrating out the random effects and thus is in a form of an n-dimensional integration   

f = g h i�jk|', (, l)i.lm4B
�, 46

�, 8/nb
Uo

���

. 

We develop an algorithm based on the penalized quasilikelihood (PQL) [1] for parameter inference 

for IMAGE. Briefly, PQL employs an iterative numerical optimization procedure. In each iteration, 

we introduce a set of pseudo-data jG to replace the originally observed count data j. The pseudo-

data jG is obtained based on a second order Taylor expansion using the conditional distribution 

�(��|', (, b)  using the first and second order moments -(��|', (, b)  and R(��|', (, b) , both 

evaluated at the current estimates of the fixed coefficients as well as the random effects b. With 

the pseudo-data, the complex likelihood function for the original data j is replaced by a much 

simpler linear mixed model (LMM) likelihood function for the pseudo-data jG, thereby alleviating 

much of the computational burden associated with our count model. With pseudo-data jG, we can 

perform inference and update parameters using the standard average information (AI) algorithm 

for LMMs [2-4]. By iterating between the approximation step of obtaining the pseudo-data jG and 

the inference step of updating the parameter estimates via the AI algorithm, PQL allows us to 

perform inference in a computationally efficient fashion. Below, we describe the estimation and 

inference procedure in detail. 

 

The observations (��, ��) (i = 1,2, … , 	O;  	O = 	� + 2	�; note our slight abuse of notation here) 

are independent conditional on the unobserved random effects b and the fixed effects ' + Q(, with 

conditional mean -���|', (, b� = ���� = *1��' + )�( + D��  and conditional variance R���|', (, b� = r���� = ���1 − �����. We use these two conditional moments to obtain the quasi-

likelihood for �sℎ observation as t��� ', (|b� = u ��1vw�v�x����� ns, which serve as an approximation for 

the conditional likelihood. The joint likelihood function can be approximated by the joint quasi-

likelihood function 

t�.', (, 4B�, 45�, 46�/ = log g Sh t���b, ', (�U
��� [ �.b|4B�, 45�, 46�/nb. 

We use Laplace approximation to further approximate the above function and obtain: 

 t�y .', (, 4B�, 45�, 46�/ = 12 log|z{ + || + � t��.by, ', (/ − 12U
��� by}z1�by, �10� 

where z = 4B�~� + 45�~� + 46�~� , dG = argmaxd �∑ t���', (|b� − ��U��� b}z1�b�  and { =
diag�1 *′�;��⁄ �  is a diagonal weight matrix. ~� = S �U�U� �U�UF ⊗ [1 1]�UFU� ⊗ Y11Z �UFUF ⊗ Y1 11 1Z[ , ~� =
?\	1×	1 ^	1×	2^	2×	1 \	2×	2 ⊗ [1 11 1]@, ~� = ?12 \	1×	1 ^	1×	2^	2×	1 \	2×	2 ⊗ [1 00 1]@. 

 

We treat the approximated quasi-likelihood function t�y  in equation (10) as the target function. And 

we obtain estimates for �b, ', (� and (4B�, 45�, 46�) alternately from equation (10). 



 

Specifically, we first obtain estimates for �b, ', (�  conditional on the current estimates of 

(4B�, 45�, 46�). To do so, following [1], we assume that the iterative weights vary slowly with respect 

to the conditional mean; that is �{�;� ≈ 0. 
We then obtain the first order derivatives with respect to either �', (� or b, and set the two first 

order derivatives to zero; that is 

 ��, Q�}{∆�j − ��� = ^, �11� 

 {∆�j − ��� − z1�b = ^, �12� 

where � = �λ�, ⋯ , λU�E�UF� and ∆= diag�*′�;���. 

We now define the pseudo-data 

 ��G = �� + *O�;����� − ;����, �13� 

and our equation (11) becomes 

 b = z�1� YjG − ��, Q� �'��Z, �14� 

where � = {1� + z. Substituting equation (14) into equation (12), we can obtain the estimates  

 7'̂��9 =  [��, Q�}�1���, Q�]1���, Q�}�1�jG, �15� 

and 

  l� = z�1� �jG − ��, Q� 7'̂��9�, �16� 

Both are conditional on the variance component estimates (4B�, 45�, 46�). 

 

Next, we obtain estimates for the variance components (4B�, 45�, 46� ) conditional on the current 

estimates of �b, ', (�. Here we first define the variance components �� = 4*2 , �� = 4+2 and �  = 4*2 . 

We then integrate out the fixed effects μ and ( in equation (10) to obtain the restricted likelihood 

function as t�y ¢���, τ�, � � = ¤¢ − 12 log|�| − 12 log|��, Q�}�1���, Q�| − 12 jG}¥jG, 
where ¥ =  �1� − �1���, Q�}.��, Q�}�1���, Q�/1���, Q��1�, and  ¤¢ is a constant. We use the 

AI algorithm to obtain variance component estimates. In particular, we obtain the first derivatives 

as �t�y ¢.4B�, 45�, 46�/��� = 12 ¦jG}¥~k¥jG − s��¥~k�§, � ∈ �1,2,3�, 
and the second derivatives as ��t�y ¢.4B�, 45�, 46�/�����© = 12 s�.~k¥~ª¥/ − jG}¥~k¥~ª¥jG;  �, « ∈ �1,2,3� 
The second derivatives constitute the observed information matrix. Because the elements in the 

expected information matrix are - ¬��t�y ¢.4B�, 45�, 46�/�����© ­ = − 12 s�.~k¥~ª¥/;  �, « ∈ �1,2,3�,  
we can obtain the average information (AI) matrix as an average of the above two matrices; that 

is 



®| = �� ¯jG}¥~�¥~�¥jG jG}¥~�¥~�¥jG jG}¥~�¥~�¥jGjG}¥~�¥~�¥jG jG}¥~�¥~�¥jG jG}¥~�¥~�¥jGjG}¥~�¥~�¥jG jG}¥~�¥~�¥jG jG}¥~�¥~�¥jG°. 
With the first and second order derivatives, we can perform Newton-Raphson update with the AI 

algorithm and obtain estimates for .4B�, 45�, 46�/.  

 

As a summary, we implement the PQL algorithm that consists of the following steps: 

1. Initialize the parameters, '���, (���, ±��� = ������, �����, � ����} , and obtain the pseudo-data jG���
 

as in equation (12). Set s = 1. 

2. Update ±�v� = ±�v1�� + ®|1� 7²³
´.µ¶F,µ·F,µF̧/²± 9; 

3. Update '�v�, (�v� and b�v� with ±�v� and jG�v1��
 as in equations (15) and (16); 

4. Update jG�v� using the '�v�, (�v� and b�v� as in equation (13); 

5. Set s = s + 1, and repeat steps 2-4 until convergence. 

Once we obtain parameter estimates �', (, 4*2 , 4+2, 4,2�, we can construct the Wald test based on (¹ = �Q}¥ºQ�1�Q}¥ºjG and Var.(¹/ = �Q}¥ºQ�1�, 

where ¼º =  �1� − �1�½}�½}�1�½}�1�½}�1�. 

 

Because of the approximation using PQL, when sample size is small (<150), we observe an 

inflation of p-values in the simulations and real data applications (e.g. the genomic control factor 

equals 1.21 and 1.12 in the two real data sets). We therefore perform an additional step of genomic 

control to adjust for p-values in a post hoc fashion. Specifically, we normalize ¾� statistics (across 

all SNP-CpG pairs) by dividing max(1, ;B¿) and then use the normalized ¾� statistics to obtain the 

final p-values.  

 

 

3. M-values Calculation 

 

For methods that use normalized data, we performed “M” value transformation. To do so, we first 

divided the number of methylated reads by the number of unmethylated reads. Afterwards, we 

performed a log2-transformation to obtain the final normalized data. The final normalized data is 

in the form of log� � À6vÁ�
Âv6Ã �6ÂÃÄEÂ5UÀ6vÁ�
Âv6Ã �6ÂÃÄEÂ�, where a small value Å = 0.01 is added to avoid zero 

values inside the log function.  
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