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Text S1 1 

Model and Algorithm Details for iMAP 2 

1. Basic model setup and prior specifications 3 

We first consider the case where the two traits of interest come from a common GWAS 4 

consortium and are measured on the same set of individuals with the same sample size n. 5 

Extending iMAP to the case that the two traits are measured in different GWAS consortia 6 

with different sample sizes will be discussed in Section 6. In iMAP, we consider the 7 

following multivariate linear model for each SNP j in turn: 8 
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 (1) 9 

where n is the number of individuals; m is the number of SNPs; yi is a two by one 10 

phenotype vector that consists of yi1 and yi2 measured on the same individual i; gij is the 11 

genotype for SNP j of individual i; βj is the corresponding two-vector of effect sizes of 12 

SNP j on the two phenotypes; eij is a two-vector of residual error with a covariance 13 

matrix Σj that accounts for phenotype correlation; and MVN2 denotes a bivariate normal 14 

distribution. While Equation (1) is primarily aimed to deal with quantitative traits, we 15 

also use Equation (1) to model binary traits by treating binary data as continuous values 16 

following many previous studies (Moser, et al., 2015; Speed and Balding, 2014; 17 

Weissbrod, et al., 2016; Zhou, et al., 2013). Methodologically, modeling binary data with 18 

linear model can be justified by the fact that a linear model is a first order Taylor 19 

approximation to a generalized linear model; and the approximation is accurate when the 20 

SNP effect size is small (Zhou, et al., 2013) — a condition that generally holds as most 21 

complex phenotypes are polygenic and are affected by many SNPs with small effects 22 

(Visscher, et al., 2017). 23 

The above model (1) is specified on SNP j. To infer genome-wide pleiotropic association 24 

pattern and improve association mapping power, we model all SNPs jointly by assuming 25 
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that the joint likelihood for all SNPs is simply a product of the likelihood for each SNP. 26 

To facilitate information sharing across genome-wide SNPs, we assign a common prior 27 

on the effects and assume that each βj a priori follows the same four-component 28 

Gaussian mixture distribution (1) 29 

 11 2 11 10 2 10 01 2 01 00 0~ MVN (0, ) MVN (0, ) MVN (0, ) δ ,j      V V V  (2) 30 

with a prior probabilities πk (k = 11, 10, 01 and 00) that sum to one. Here π11 represents 31 

the prior probability that a SNP is associated with both traits; V11  = 
2 2
11 12
2 2
21 22

σ σ

σ σ

 
 
 

 is a two 32 

by two covariance matrix modeling the covariance of SNP effects on the two traits. π10 33 

represents the prior probability that a SNP is associated with the first trait but not the 34 

second; V10 = 
2
1σ 0

0 0

 
 
 

 is a low-rank covariance matrix restricting that only the effect 35 

size for the first trait is nonzero. π01 represents the prior probability that a SNP is 36 

associated with the second trait but not the first; V01 = 2
2

0 0

0 σ

 
 
 

 is a low-rank covariance 37 

matrix restricting nonzero effect only for the second trait. Finally, π00 represents the prior 38 

probability that a SNP is not associated with any traits; δ0 denotes a point mass at zero. 39 

We specify conjugate priors for the three hyper-parameters Vk (k = 11, 10, and 01) and 40 

we borrow information across genome-wide SNPs to infer these parameters. The 41 

estimated probability of a SNP having nonzero effects on any traits (i.e. π11 + π10 + π01) is 42 

commonly referred to as the posterior inclusion probability (PIP), which represents 43 

association evidence for the given SNP. We can also use PIP to provide a conservative 44 

estimate of false discovery rate (FDR) (Benjamini and Hochberg, 1995) based on local 45 

false discovery rate (Efron, et al., 2001) via the direct posterior probability approach 46 

(Newton, et al., 2004). We impose the following priors for the unknown parameters in 47 

model (2) 48 
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 (3) 49 

where d is the dimension of V. To ensure numeric stability, we follow (Chung, et al., 50 

2015; Gelman, et al., 2008) and specify relatively informative priors for the hyper-51 

parameters α = (α11, α10, α01 and α00), v0 and Λ0. Specifically, we set αk = m/1000, where 52 

m is the total number of SNPs. We set the mean of the inverse-Wishart Λ0v0 = V0m/1000, 53 

where V0 is the estimated phenotypic covariance matrix to be obtained from summary 54 

statistics (Pickrell, et al., 2016; Stephens, 2013).  55 

2. Likelihood function and posterior distribution 56 

To facilitate computation, for each SNP j we assign a 4-vector of membership indicator 57 

variables jγ , here each element γ jk  = 1 if βj is from the kth normal component and γ jk  = 58 

0 otherwise, for k = 11, 01, 10 or 00. Let ( , , )j j j j γ    and {11,10, 01, 00}  . We 59 

denote 11 01 10 11 01 10( , , ,V ,V ,V , , , )j m         to include all the unknown parameters in 60 

the iMAP model. To write down the likelihood, instead of focusing on the original 61 

phenotypes y, following (Zhu and Stephens, 2017) we focus on the marginal effect size 62 

estimates ˆ
j . Each ˆ

j  is a two-dimensional vector with each element obtained by fitting 63 

a generalized linear regression model between the genotype vector and the corresponding 64 

trait. For continuous traits, we use the original scale of ˆ
j , while for binary traits, we use 65 

the log-scale of ˆ
j  (i.e. log odd ratio). Then, under the model described in Equation (1), 66 

ˆ
j  marginally follows a multivariate normal distribution. The effect size estimates ˆ

j  67 

are correlated among each other due to linkage disequilibrium. We ignore the correlation 68 

among SNPs and rely on independence marginal likelihood for inference. Independence 69 

marginal likelihood can be considered as a special case of composite likelihood that is 70 

commonly used for statistical estimation and inference of complex models, for which it is 71 

impossible or difficult to yield and estimate the full likelihood due to complicated 72 
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dependence (Larribe and Fearnhead, 2011; Varin, 2008; Varin, et al., 2011). Under 73 

regulatory conditions, the point estimates obtained based on composite likelihood are 74 

consistent and asymptotically normally distributed (Kenne Pagui, et al., 2015; Varin, 75 

2008; Varin, et al., 2011). The independent composite likelihood for all SNPs is a simple 76 

product of the likelihood for each SNP 77 

 1
1

ˆ ˆ ˆlog ( , ..., | ) ~ log ( | ),
m

m j
j

p p

      (3) 78 

which, after ignoring the constant terms, is in turn equivalent to assuming that the joint 79 

likelihood based of   on y is a simple product of the corresponding likelihood for each 80 

SNP 81 
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with the log joint posterior as 83 
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 (5) 84 

3. Expectation-Maximization algorithm  85 

We use the Expectation-Maximization (EM) algorithm (Dempster, et al., 1977) to obtain 86 

the maximum a posterior (MAP) estimate of the parameters in model (5). Specifically, 87 

we view the mixture group assignment of each SNP jγ   as missing data and impute them 88 

in the expectation step. We then perform optimization and obtain parameter estimates in 89 

the maximization step. The detailed E and M steps are listed below.  90 

E step 91 

The log likelihood for γ jk  is 92 

 
1 2 1 2 1

2
1 1

log (γ | ) γ ,
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y

V I V  
 (6) 93 

where ˆ
jk  is given in Equation (9) below. We can obtain the conditional expectation for 94 

γ jk  as 95 

 (γ ) jkC

jk jkE e  . (7) 96 

Replacing γ jk  in Equation (6) with its expectation in Equation (7) gives our target 97 

function for optimization.  98 
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M step 99 

We optimize the expectation of Equation (7) to obtain estimates for each parameter in 100 

turn. The log likelihood and estimate for k  are 101 
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 (8) 102 

The log likelihood for 
jk  is 103 
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And the estimate and its variance for 
jk  are  105 
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The log likelihood and estimate for kV  are 107 
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The log likelihood and estimate for 
j  are 109 
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We summarize the EM algorithm for iMAP in Algorithm 1, where we denote   and 0  111 

as the pre-specified convergence criterion and threshold, respectively. In particular, we 112 

define   as the difference between two consecutive parameter estimates. In the present 113 

study, we set +1max | |k k
k

m m     (see Equation (13) for the computation of m) and 0  = 114 

5.  115 

4. Use of Summary Statistics  116 

We summarize the estimation procedure above in Algorithm 1, which assumes the 117 

availability of individual-level genotypes and phenotypes. However, Algorithm 1 can be 118 

easily modified when only summary statistics in terms of marginal z scores are available. 119 

To do so, we make two assumptions. First, we assume that both the genotypes and 120 

phenotypes are standardized to have mean zero and standard deviation one. This 121 

assumption is only for convenience. The algorithm can be easily modified to cases where 122 

we know the phenotypic variance and the genotype variance for each SNP – the later can 123 

be obtained from a reference panel in practice. Second, we assume that the effect size for 124 

each SNP is small, such that the phenotypic variation and the residual error variance are 125 

approximately equal to each other. The second assumption is valid for almost all 126 

complex traits. The two assumptions we make are commonly employed in previous 127 

summary statistics methods (Bulik-Sullivan, et al., 2015; Finucane, et al., 2015; Pasaniuc 128 

and Price, 2017; Shi, et al., 2016; Vilhjálmsson, et al., 2015). With these assumptions, we 129 

can convert Algorithm 1 to Algorithm 2 that uses only summary statistics in terms of 130 

marginal z scores.  131 

 132 

 133 
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Algorithm 1: EM algorithm for iMAP using individual-level data 134 

Input: individual-level data genotypes G and traits y; and initial values 0
jk , 0

kV  and 0
k  

Let 0  

while  0    do 

       1    

       For  {1, 2, ..., }j m  do 

               For k   do 

                     Compute 1 1 1 1 1 1ˆ, , , , ,jk k k j jk km      V        in terms of Equations (6)-(12); 

               End 

       End 

End 

Output: ˆ ˆˆˆ ˆ ˆ, , , , ,jk k k j jk km  V  .  

Algorithm 2: EM algorithm for iMAP using marginal z scores 135 

Input: summary-level z score values, sample size n, initial values 0
jk , 0

kV  and 0
k ; and 

the estimated phenotypic covariance matrix  directly using marginal z scores from the 

null SNPs. 

Let 0  

while  0    do 

       1    

       For  {1, 2, ..., }j m  do 

               For k   do 

                     Compute 1 1 1 1 1ˆ, , , ,jk k k jk km     V      in terms of Equation (13); 

               End 

       End 

End 

Output: ˆ ˆˆ ˆ ˆ, , , ,jk k k jk km  V .  
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 (13) 136 

5. Estimate phenotypic covariance using summary statistics  137 

iMAP relies on the phenotype covariance matrix Σ to account for phenotypic correlation 138 

between traits (see Algorithm 2). Here, we show how to estimate Σ using only summary 139 

statistics. Let y1 and y2 be the n by one centered phenotypic vectors for the first and the 140 

second traits, respectively. Let Gj be the n by one standardized genotype vector for SNP j 141 

(i.e. 1T
j j n G G  and 

1
0

n

iji
G


 ) for j = 1, 2, …, m. We fit a standard linear regression 142 

on SNP j for each trait separately and we obtain the marginal z scores approximately as 143 
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As shown in previous studies (Liu and Lin, 2017; Stephens, 2013; Zhu, et al., 2015), 145 

under the null that SNP j have zero effects on both traits, the covariance between the 146 

marginal z scores is 147 
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where the second equation holds because the genotype is assumed to be standardized, the 149 

phenotypes are assumed to be centered, and both z1j and z2j asymptotically follow a 150 

standard normal distribution under the null such that the expectations of z1j and z2j are 151 

zero. Therefore, the covariance between the marginal z scores under the null equals to the 152 

covariance between the two phenotypes. Relying on the relationship in Equation (15), we 153 

first obtain a set of null SNPs that have marginal z scores for both traits whose absolute 154 

values are below a threshold of two following (Stephens, 2013). We then compute the 155 

sample covariance between the z scores for the two traits across the null SNPs and it as 156 

an estimate of Σ. 157 

6. Extension to two traits from different consortia  158 

We now extend iMAP to situations where the two traits of interest come from two 159 

different GWAS consortia with different sample sizes. In particular, we consider two 160 

common scenarios. In the first scenario, the two consortia have no overlapping 161 

individuals. In this case, we can use independent linear regression models to model the 162 

two traits separately 163 

 1

2

2
1 1 1 1 1

2
2 2 2 2 2

, ~ (0, σ ),

, ~ (0, σ ),

i j ij ij ij n

i j ij ij ij n

g N

g N





y +

y +





e e

e e
 (16) 164 

which is somewhat equivalent to Equation (1) with Σ in the specific form of 165 

2
1

2
2

σ 0

0 σ

 
   

 
. We denote n1 and n2 as the sample sizes of the two traits. Modifying our 166 

algorithms for the likelihood defined in Equation (16) is straightforward and involves 167 

only a simple replacement of 1n   in Algorithms 1 and 2 with 
2
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and a replacement of 1/2
2mn z  with 1

2

2

0

0
m

n

n


 
  
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z . In the second scenario, the two 169 

consortia have partially overlapping individuals. Under this situation, we will rely on the 170 

model in Equation (1) and follow the strategy described in Section 5 to estimate the 171 

variance Σ of the two traits. Intuitively, if there is no sample overlap, then the off-172 
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diagonal element of Σ will be estimated to be zero, as the covariance between the 173 

marginal z scores from the two traits is expected to be zero. If there is a partial sample 174 

overlap, then the off-diagonal element will reflect the part of trait covariance retained due 175 

to the partial sample overlap. Therefore, in both scenarios, we can directly follow the 176 

procedure described in Section 5 to estimate the covariance of the two traits and then 177 

follow the algorithm described in Section 4 for estimation. 178 

7. Functional annotations and penalized selection 179 

We integrate SNP functional annotations into the basic model to facilitate SNP 180 

prioritization. Let X be an m by (q + 1) matrix that contains q functional annotations for 181 

m SNPs, where the first column of X is a column of ones that represent the intercept. We 182 

adopt the multinomial logit (mlogit) regression model to relate X to the mixture prior 183 

probabilities πk (k = 11, 10, 01 and 00)  184 
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 (17) 185 

where bk are the annotation coefficients. We consider k = 00 as the reference and set b00 = 186 

0 to ensure model identifiability. Note that, in the cases where SNPs belong to only two 187 

categories (e.g. causal vs non-causal), the mlogit model reduces to a logistic regression 188 

model that is commonly used to link functional annotations to SNP causality (Carbonetto 189 

and Stephens, 2013; Wen, et al., 2016; Wen, et al., 2015). We use a mlogit model here 190 

because it naturally extends the logistic model to cases where SNPs can belong to more 191 

than two categories (e.g. four categories here: k = 11, 10, 01 and 00). The corresponding 192 

log likelihood of (17) for b becomes 193 

 
1

( ) ( log (γ ) log exp( ))
m

jk j k j k
j k k

L E x x
  

    b b b , (18) 194 
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from which we obtain the estimates ˆ arg max{ ( )}k Lb b . The Equation (18) can be 195 

viewed as the log likelihood function of a variation of the mlogit model, in which the 196 

usual 0/1 binary responses are replaced by the continuous responses ( γ )jk jkE  . 197 

Therefore, the optimization of Equation (18) can be carried out based a mlogit model that 198 

treats the conditional expectation 
jk  as responses.  199 

The classical iteratively re-weighted least squares (IRLS) method commonly used for 200 

mlogit model inference (McCullagh and Nelder, 1989) can be used to estimate the 201 

annotation coefficients bk. However, IRLS is computational inefficient for large m. 202 

Therefore, we instead use the Newton-Raphson algorithm based on the computational 203 

strategy presented in (Hasan, et al., 2016) for optimization of Equation (18). This 204 

Newton-Raphson algorithm takes full advantage of the sparse structure of the Hessian 205 

matrix in the mlogit model, and is thus computationally efficient even when m is in the 206 

order of a million. In addition, the Newton-Raphson algorithm naturally provides the 207 

observed Fisher information matrix (i.e. the negative Hessian matrix) that can be used to 208 

further compute the standard errors for the annotation coefficient estimates. 209 

With the growing number of SNP annotations nowadays, however, it becomes 210 

increasingly challenging to model all annotations in the above mlogit model. Examining 211 

one annotation at a time (Kichaev, et al., 2014; Pickrell, 2014) does not take full 212 

advantage of the correlation structure among annotations and may fail to properly 213 

account for multiple testing issue (Chen, et al., 2016). While including all annotations 214 

jointly without any prior assumption may incur heavy computational burden, reduce the 215 

degrees of freedom, and lead to a potential loss of power. Here, to handle a large number 216 

of annotations, we hypothesize that only a fraction of these annotations are likely 217 

informative. To select the small set of informative annotations, we impose a Lasso 218 

penalty (Tibshirani, 1996) on the log likelihood given in (18)  219 

 
{11,10, 01} 1

( ) ( ) λ | |,
q

kd
k d

Q L b
 

    b b  (19) 220 
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where λ is the tuning parameter. Optimizing the penalized log likelihood (19) is 221 

computationally challenging both due to the complicated mlogit likelihood and a large 222 

number of SNPs. To speed up computation, instead of using the usual gradient descent 223 

algorithm in Lasso for mlogit, we first apply the least squares approximation (LSA) to 224 

the mlogit likelihood (Wang and Leng, 2007; Zeng, et al., 2014) to obtain an easy to 225 

evaluate likelihood function. In particular, we first approximate ( )L b  based on a Taylor 226 

expansion at the maximum likelihood estimator mlb̂ up to the second order (Hasan, et al., 227 

2016) 228 

 ml ml ml ml ml ml

1ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )( )
2

T TL L L L       b b b b b b b b b b , (20) 229 

where L   and L   are the first and second derivatives of the log likelihood function of 230 

( )L b , respectively. Because mlb̂  is the maximum likelihood estimator, ml
ˆ( )L b  is a 231 

constant and ml
ˆ( )L b  equals zero. Therefore, the penalized log likelihood function Q in 232 

(19) is approximated by 233 

 
1

ml ml ml
{11,10, 01} 1

1 ˆ ˆ ˆ( ) ( )( ) λ | |
2

q
T

kd
k d

L b


 

    b b b b b . (21) 234 

The above approximation is referred to the least squares approximation (Wang and Leng, 235 

2007) or the Laplace approximation in general context. Let  = 1
ml

ˆ{ ( )}L  b  be the 236 

observed variance-covariance matrix of mlb̂ . We denote * 1/2X , * 1/2
ml

ˆ Y b , and 237 

re-express Equation  (21) as 238 

 
1

* * * *

{11,10, 01} 1

1
( ) ( ) ( ) λ | |,

2

q

kd
k d

Q b


 

   Y X Y X b b b  (22) 239 

which is in the form of the familiar standard Lasso regression. Therefore, we can use 240 

standard algorithms, such as the least angle regression algorithm (Efron, et al., 2004) or 241 

the coordinate descent algorithm (Friedman, et al., 2007; Friedman, et al., 2010), to 242 
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obtain ˆ (λ ) arg m in{ ( )}Qb b . Afterwards, following (Wang and Leng, 2007), we use a 243 

BIC-type criterion to select the optimal tuning parameter λ as in (22).  244 

8. False discovery rate control 245 

After we obtain the estimated parameters from iMAP, for every SNP in turn, we compute 246 

the local false discovery rate (locfdr) following (Efron, 2007; Efron, 2008; Efron, et al., 247 

2001). locfdr is closely related to the mixture probability  , and we use locfdr both to 248 

prioritize SNP associations, and in the real data, to identify a genome-wide significance 249 

threshold for declaring significance. To do so, we first rely on the definition of locfdr 250 

(Efron, et al., 2001) and compute four quantities: (i) locfdr10, which represents the 251 

evidence that the SNP j is associated with the first trait; (ii) locfdr01, which represents the 252 

evidence that the SNP j is associated with the second trait; (iii) locfdr11, which represents 253 

the evidence that the SNP j is associated with both traits; and (iv) locfdr00, which 254 

represents the evidence that the SNP j is not associated with any trait. The four quantities 255 

are computed as follows: 256 

 

00 00 01 01
10 00 01

11 11 10 10 01 01 00 00

00 00 10 10
01 00 10

11 11 10 10 01 01 00 00
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r ,j j

f

f f f f

 
   
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  

 (23) 257 

where fk is the probability density of the distribution component in the Gaussian mixture 258 

prior given in Equation (2). The densities fk and the mixture proportions πk can be 259 

estimated as by-products from our Algorithms 1 and 2. We can plug-in the estimates for 260 

fk and πk to Equation (23) to obtain estimates for the four locfdr.  261 

We then use locfdrk (k = 11, 10 and 01) to estimate the false discovery rate (FDR) 262 

(Benjamini and Hochberg, 1995) by using the direct posterior probability approach 263 

(Newton, et al., 2004). To do so, for each k, we first sort locfdr from the smallest to the 264 
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largest, where the jth ordered value is ( )locfdr j
k

 (j = 1, …, m). We then fixed an FDR 265 

threshold of αk (e.g. 0.1%) and identified the cutoff value ˆkc  for locfdr that leads to the 266 

desired FDR, or 267 

 ( ) ( )

1

1
ˆ arg max{ (I(locfdr ) locfdr ) },

k

L
j j

k k k k k
c j

c c
L




    (24) 268 

where I is an indicator variable that equals to one when the condition is true and zero 269 

otherwise. Following  (Chung, et al., 2014), we declare SNPs with at least one locfdrk 270 

that is less than the identified threshold 
kc to be significant associations. We also declare 271 

SNPs with an locfdr11 that is less than the identified threshold 
11c to be significant 272 

pleiotropic associations. Certainly, for a given cutoff value 
kc , we can also compute the 273 

corresponding FDR as  274 

 ( ) ( ) ( )

1 1

1
FDR( ) locfdr I(locfdr ), I(locfdr )

R m
j j j

k k k k k k
j j

c c R c
R  

       . (25) 275 

9. Compare with other existing methods 276 

Besides iMAP, we also examine the following methods:  277 

(i) univariate analysis, denoted as univariate, where we analyzed one SNP at a time. For 278 

each SNP, we obtained the marginal z scores for the two traits and then applied 279 

locfdr (R package version 1.1-8) (Efron, 2007) on the z scores across SNPs to 280 

identify associations at a fixed FDR. The univariate analysis does not incorporate 281 

SNP annotation patterns nor account for phenotypic correlation between the two 282 

traits.  283 

(ii) gwas-pw (Pickrell, et al., 2016), denoted as gwas-pw, where we applied the software 284 

gwas-pw (https://github.com/joepickrell/gwas-pw) to analyze marginal variances of 285 

effects and z scores from the two traits. gwas-pw examines independent linkage 286 

disequilibrium (LD) blocks (Berisa and Pickrell, 2016) and classifies them into five 287 

groups based on SNP association pattern: (a) none of the SNPs inside the block are 288 
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associated with either trait; (b) one SNP inside the block is associated with the first 289 

trait but not the second; (c) one SNP inside the block is associated with the second 290 

trait but not the first; (d) one SNP inside the block is associated with both traits; and 291 

(e) two SNPs in LD are each associated with one trait. Note that each block contains 292 

one SNP in our GPA based simulations, while contains approximately 30 SNPs in 293 

our gwas-pw based simulations. We used the posterior probability output from gwas-294 

pw to estimate FDR.  295 

(iii) GPA (Chung, et al., 2014), where we used the software GPA 296 

(https://github.com/dongjunchung/GPA) to analyze marginal p values from the two 297 

traits. We used the estimated local false discover rate values from GPA to prioritize 298 

SNPs and compute power and FDR. However, unlike iMAP, GPA does not output 299 

the estimated annotation coefficients that represent the importance of annotations. 300 

 301 
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Text S2 302 

Simulations and Real Data Processing  303 

1. Simulation Designs 304 

We conducted a range of simulations to evaluate the performance of iMAP and 305 

compared it with existing methods. For simulations, we obtained genotypes from the 306 

Kaiser Permanente/UCSF Genetic Epidemiology Research Study on Adult Health and 307 

Aging (GERA; dbGaP accession number phs000674.v2.p2) (Banda, et al., 2015; Kvale, 308 

et al., 2015). The raw data of the GERA study consists of 62,313 individuals and 675,367 309 

SNPs. We filtered out SNPs that had a missingness percentage greater than 0.95 across 310 

individuals, genotype calling rate below 0.95, minor allele frequency (MAF) greater than 311 

0.01, or Hardy-Weinberg equilibrium test p value smaller than 10-4. A total of 487,609 312 

SNPs retained after filtering. The missing values of SNP were imputed with the mean of 313 

that SNP. Following (Chung, et al., 2014), we used plink (Purcell, et al., 2007) (version 314 

1.90b3.38) to prune the genotypes (with plink command “--indep-pairwise 100 100 0.01”) 315 

and obtained m=15,495 approximately independent SNPs. We also randomly selected 316 

n=10,000 individuals and used genotypes for this set of individuals to simulate pairs of 317 

phenotypes. We considered a range of simulation settings described below and 318 

performed 100 simulation replicates in each simulation setting. 319 

In the simulations, we selected 500 SNPs to be causal for each trait. To allow for 320 

pleiotropic effects, these causal SNPs were selected in a way that ensures a desired 321 

proportion of pleiotropic SNPs (0%, 20%, 40%, 60%, 80% or 100%). For example, in the 322 

case of 20% pleiotropic SNPs, we first randomly selected 100 SNPs to have nonzero 323 

effects for both traits. We then randomly selected 400 to have nonzero effects on the first 324 

trait and another 400 to have nonzero effects on the second trait; thus, a total of 900 325 

SNPs had nonzero effects on at least one trait. We simulated each nonzero effect of the 326 

causal SNPs independently from a standard normal distribution. Therefore, the effects of 327 

pleiotropic SNPs on the two traits are also independent as in previous studies (Chung, et 328 
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al., 2014). While we only present results based on independent effects, we have 329 

examined scenarios where the pleiotropic SNPs have correlated effects but found effect 330 

correlation to have a minor influence on method comparison. After simulating the causal 331 

effects, we scaled the simulated effects further so that the proportion of phenotypic 332 

variance explained (PVE) by all causal SNPs for each trait was 0.5 (i.e. heritability of 333 

each trait equals 0.5). We then simulated residual errors from a bivariate normal 334 

distribution with mean zero, variance one, and covariance varied in the range of -0.8 to 335 

0.8 (including 0) to evaluate the influence of phenotypic correlation on the performance 336 

of various methods. We summed genetic effects with residual errors to form the 337 

simulated phenotypes. We finally quantile-normalized the phenotypes for each trait to a 338 

standard normal distribution before analysis.  339 

After we simulated phenotypes, we paired them with genotypes to obtain summary 340 

statistics. Specifically, for each trait in turn, we examined one SNP at a time and used a 341 

linear regression model to obtain a set of marginal statistics that include variances of the 342 

effect size estimates, z scores and p values. With these summary statistics, we fitted the 343 

following methods (details in the next section): (i) univariate analysis that relies on 344 

marginal z scores; (ii) gwas-pw that uses marginal z scores and variances of estimated 345 

effect sizes; (iii) GPA that uses marginal p values; (iv) iMAP that uses marginal z scores. 346 

Note that only GPA and iMAP model SNP annotations, and only iMAP models 347 

phenotypic correlation. Because iMAP relies on the phenotype covariance matrix Σ to 348 

account for phenotypic correlation, it also requires an estimate of Σ. To obtain such an 349 

estimate, we followed previous studies (Liu and Lin, 2017; Stephens, 2013; Zhu, et al., 350 

2015) to obtain a set of null SNPs that have marginal z scores (in absolute value) for both 351 

traits below two. We then computed the sample covariance matrix of the z scores for the 352 

two traits across the null SNPs as an estimate of Σ. 353 

To examine the benefits of incorporating annotations, following (Chung, et al., 2014), we 354 

simulated two sets of SNP annotations that include an informative set and an 355 

noninformative set. The values for the informative annotations are dependent on the 356 

causality of SNPs, while the values of the noninformative annotations are independent of 357 

SNP causality. For the tth informative annotation, we simulated the SNP annotation 358 
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values from a normal distribution with variance one and a mean that depends on SNP 359 

causality: mean = mt for causal SNPs and mean = 0 for noncausal SNPs, where mt is the 360 

same across all SNPs and is randomly (with respect to t) set to be either 0.5 or -0.5. The 361 

mean values of 0.5 or -0.5 were selected to ensure a reasonably high power in the 362 

simulations. For noninformative annotations, we directly simulated annotations from a 363 

standard normal distribution.  364 

We performed two primary sets of simulations with regard to the use of annotations. The 365 

first set involves a small number of annotations. Here, we considered four sub-scenarios 366 

that include different numbers of informative annotations: (i) no annotations; (ii) one 367 

annotation; (iii) two annotations; (iv) four annotations. Because GPA can only handle 368 

binary annotations, we transformed continuous annotations into binary annotations with a 369 

cutoff value of zero (which is optimal under our simulation setting). For iMAP, we 370 

performed analyses with either continuous annotations or the transformed binary 371 

annotations. The second set involves a large number of annotations. Here, we simulated 4 372 

informative annotations and 100 noninformative annotations. We considered three sub-373 

analyses with iMAP: (i) iMAP, which is a standard analysis that uses iMAP with Lasso-374 

based selection to analyze all 104 annotations; (ii) iMAP-oracle, which is an oracle 375 

analysis that uses iMAP to analyze only the four informative annotations without Lasso-376 

based selection; (iii) iMAP-full, which is a full analysis that uses iMAP to analyze all 377 

104 annotations without selection.  378 

While our main simulations followed that described in GPA (Chung, et al., 2014), we 379 

also performed an alternative set of simulations that follow the simulation setting 380 

described in gwas-pw (Pickrell, et al., 2016). Specifically, we divided 15,495 SNPs into 381 

500 equal-size regions with approximately 30 SNPs in each region. We randomly 382 

selected 60% of the regions to be causal. In each causal region, we randomly selected 383 

two causal SNPs to have nonzero effects. These two causal SNPs have equal probability 384 

(= 1/3) to affect only the first trait, or the second trait, or both traits. We simulated causal 385 

effects and residual errors in the same way as above and summed genetic effects with 386 

residuals to form the simulated phenotypes.  387 
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2. Evaluating the influence of LD 388 

Besides simulations with independent SNPs, we also performed a series of simulations 389 

using correlated SNPs to evaluate the robustness of various methods under linkage 390 

disequilibrium (LD). To do so, we used the same 10,000 individuals from GERA and 391 

obtained m = 79,979 genotypes from the first two chromosomes without pruning. We 392 

used simulation settings described in the main text and simulated phenotypes. Like in the 393 

main text, we performed 100 simulation replicates for each simulation setting. A key 394 

challenge to evaluate the performance of different methods in terms of association 395 

mapping power in the presence of correlated SNPs is the definition of “causal” SNPs. In 396 

particular, because SNPs are in LD, neighboring SNPs of the truly causal SNPs would 397 

also display association signal and identifying these neighboring SNPs can help pinpoint 398 

causal locus. Therefore, for power comparison, we define SNPs as “causal” if they are 399 

within a given distance of the truly causal SNPs. We examine a range of distance cutoffs 400 

(0 to 1000kb) in the simulations.   401 

Regardless of the distance cutoff, the power comparison results with correlated SNPs are 402 

qualitatively similar compared to the early simulations with independent SNPs, though 403 

the power gain of iMAP over GPA becomes smaller (Figure S16). However, the 404 

estimated FDR from all methods depends heavily on the distance cutoff we use (Figure 405 

S17): the estimated FDR is overly liberal when the distance cutoff is within 300 kb, is 406 

approximately calibrated when the distance cutoff is in the range of 300 - 500 kb, and is 407 

overly conservative when the distance cutoff is beyond 500 kb. LD also influences causal 408 

proportion estimation. In particular, all three methods (gwas-pw, GPA and iMAP) 409 

overestimate π11 and π10 (and π01) in the presence of LD (Figure S18). In addition, 410 

depending on the relative overestimation on these proportions, different methods can 411 

show bias and variance for estimating π11/(π10+π11) (Figure S18). Specifically, gwas-pw 412 

and iMAP produce highly variable estimates that are sometimes underestimated and 413 

sometimes overestimated. In contrast, GPA tends to overestimate π11/(π10+π11) when the 414 

proportion of pleiotropic SNPs is small (e.g. less than 20%) and underestimate it when 415 

the proportion of pleiotropic SNPs is large (e.g. greater than 20%). Overall, estimating 416 
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proportion of causal SNPs is challenging with existing mixture models in the presence of 417 

correlated SNPs. 418 

3. Data Processing for Real Data 419 

We applied the above methods to analyze 48 traits from 31 GWAS consortium studies. 420 

These traits span a wide range of phenotypes that include anthropometric traits (e.g. 421 

height and BMI), hematopoietic traits (e.g. MCHC and RBC), immune diseases (e.g. CD 422 

and IBD) and neurological diseases (e.g. Alzheimer's disease and schizophrenia). We 423 

obtained these GWAS data from public websites (Table S1) and used marginal p values 424 

for GPA, variances of effect size estimates and z scores for gwas-pw, or z scores for 425 

iMAP and univariate analysis. We retained SNPs that have a MAF larger than 0.05 in the 426 

503 individuals of European ancestry from the 1000 Genomes Project (The 1000 427 

Genomes Project Consortium, 2015). We further removed the major histocompatibility 428 

complex (MHC, Chr6: 26 ~ 34Mb) region following (Finucane, et al., 2015). Our final 429 

analyses are focused on a set of 652,356 SNPs that are shared across all data sets. Table 430 

S1 lists all GWAS data sets used in the present study.  431 

Specifically, GWAS data for FG, H2G and HOMA B are from the Meta-Analyses of 432 

Glucose and Insulin-related traits (MAGIC) Consortium (www.magicinvestigators.org). 433 

Data for Height and BMI2 are from the Genetic Investigation of ANthropometric Traits 434 

(GIANT) consortium (https://portals.broadinstitute.org). Data for T2D are from the 435 

DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) consortium 436 

(http://diagram-consortium.org.html). Data for HDL, LDL, TC and TG are from the 437 

Global Lipids Genetics Consortium (http://csg.sph.umich.edu). Data for CAD are from 438 

the CARDIoGRAMplusC4D consortium (www.cardiogramplusc4d.org). Data for heart 439 

rate are from the HRgene consortium (https://walker05.u.hpc.mssm.edu/). Data for 440 

Menarche and Menopause are from the ReproGen consortium (http://www.reprogen.org). 441 

Data for BMI1, BW2, Growth 10, Growth PG and Obesity are from the Early Growth 442 

Genetics (EGG) consortium (http://egg-consortium.org/). Data for Alzheimer's disease 443 

are from the International Genomics of Alzheimer's Project (http://web.pasteur-lille.fr).  444 

Data for Anorexia, DS, SCZ, BIPSCZ, BIP, Autism, CPD and Ever Smoked are from the 445 
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Psychiatric Genomics Consortium (https://www.med.unc.edu/pgc). Data for Neuroticism, 446 

YE1 and YE2 are from the Social Science Genetic Association Consortium 447 

(https://www.thessgac.org/). Data for UC, IBD and CD are from the International 448 

Inflammatory Bowel Disease Genetics Consortium (https://www.ibdgenetics.org/). Data 449 

for FNBMD and LSBMD are from the GEnetic Factors for OSteoporosis Consortium 450 

(http://www.gefos.org/).  Data for MCHC, MCH, HB, MCV, MPV, PCV, PLT and RBC 451 

are from the Blood Cell Consortium (http://www.mhi-humangenetics.org/). 452 

We extracted SNP annotations based on genome-wide histone occupancy of four histone 453 

marks (H3K27me3, H3K36me3, H3K4me1 and H3K4me3) from 105 tissues in the 454 

Roadmap Epigenomics Project (Roadmap Epigenomics Consortium, et al., 2015). These 455 

four histone marks were selected instead of the original six because the four have few 456 

missing values across tissues. We grouped the 105 tissues into 10 tissue categories (i.e. 457 

Blood/Immune, Adipose, Adrenal/Pancreas, Bone/Connective, Cardiovascular, central 458 

nervous system (CNS), Gastrointestinal, Liver, Muscle and Other) based on anatomy 459 

type following previous studies (Finucane, et al., 2015; Lu, et al., 2016; Roadmap 460 

Epigenomics Consortium, et al., 2015). For each tissue type and each histone mark, we 461 

created a binary annotation to indicate whether a given SNP resides inside the peak 462 

regions of the histone mark. In addition, for each tissue group and each histone mark in 463 

turn, we averaged the binary annotations across all tissue types within that tissue group 464 

and generated a new, continuous histone annotation at the tissue group level. We used 465 

these 40-tissue group level histone annotations in the present study. We applied the same 466 

four methods described in the previous section to analyze the data. 467 

 468 
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