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Abstract

Motivation: Genome-wide association studies (GWASs) have identified many genetic loci associ-

ated with complex traits. A substantial fraction of these identified loci is associated with multiple

traits—a phenomena known as pleiotropy. Identification of pleiotropic associations can help char-

acterize the genetic relationship among complex traits and can facilitate our understanding of dis-

ease etiology. Effective pleiotropic association mapping requires the development of statistical

methods that can jointly model multiple traits with genome-wide single nucleic polymorphisms

(SNPs) together.

Results: We develop a joint modeling method, which we refer to as the integrative MApping of

Pleiotropic association (iMAP). iMAP models summary statistics from GWASs, uses a multivariate

Gaussian distribution to account for phenotypic correlation, simultaneously infers genome-wide

SNP association pattern using mixture modeling and has the potential to reveal causal relationship

between traits. Importantly, iMAP integrates a large number of SNP functional annotations to sub-

stantially improve association mapping power, and, with a sparsity-inducing penalty, is capable of

selecting informative annotations from a large, potentially non-informative set. To enable scalable

inference of iMAP to association studies with hundreds of thousands of individuals and millions of

SNPs, we develop an efficient expectation maximization algorithm based on an approximate penal-

ized regression algorithm. With simulations and comparisons to existing methods, we illustrate the

benefits of iMAP in terms of both high association mapping power and accurate estimation of

genome-wide SNP association patterns. Finally, we apply iMAP to perform a joint analysis of 48

traits from 31 GWAS consortia together with 40 tissue-specific SNP annotations generated from

the Roadmap Project.
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1 Introduction

Genome-wide association studies (GWASs) have identified thou-

sands of genetic variants associated with many complex diseases and

traits (MacArthur et al., 2017). A substantial fraction of these iden-

tified loci often display association with more than one trait—a phe-

nomenon known as pleiotropy (Solovieff et al., 2013). Notable

examples of pleiotropic genes include PTPN22 and HLA-DRB1

that are associated with several different autoimmune disorders

(The Wellcome Trust Case Control Consortium, 2007); CLPTM1L

with multiple types of cancers (Fletcher and Houlston, 2010);

CACNA1C with bipolar disorder and schizophrenia (Cross-

Disorder Group of the Psychiatric Genomics Consortium, 2013b);

ANGPTL3, TIMD4, PPP1R3B and TRIB1 with multiple plasma

lipid traits (Teslovich et al., 2010); MYL2 with various metabolic

traits (Kim et al., 2011); ZFAT with total cholesterol, blood pressure

and cardiovascular disease (Smith et al., 2010; Warren et al., 2017);

and ABO with blood group, various blood measurements and coro-

nary artery disease (Bulik-Sullivan et al., 2015; Pickrell et al., 2016).

Overall, it has been estimated that 4.6% of the previously identified

associated variants and 16.9% of the previously identified associ-

ated genes show pleiotropic effects (Sivakumaran et al., 2011). The

percentage of pleiotropic association is often much higher in biologi-

cally relevant traits. For example, about 44–70% of genetic variants

that are associated with one autoimmune disease are also associated

with another (Cotsapas et al., 2011; Jostins et al., 2012; Solovieff

et al., 2013). In addition, joint heritability analyses of multiple traits

have also revealed substantial genetic correlation among various

psychiatric disorders (Bulik-Sullivan et al., 2015; Cross-Disorder

Group of the Psychiatric Genomics Consortium, 2013a), between

schizophrenia and brain anatomic measurements (Lee et al., 2016)

or amyotrophic lateral sclerosis (McLaughlin et al., 2017), between

neuropsychiatric disorders and several metabolic traits (Lane et al.,

2017), as well as among multiple autoimmune diseases (Ji et al.,

2017; Zhernakova et al., 2009).

Because of the prevalence and importance of pleiotropy, many

statistical methods have been developed to identify genetic variants

that are associated with multiple phenotypes (Li and Kellis, 2016;

Liu et al., 2016; Solovieff et al., 2013; van der Sluis et al., 2013;

Zhou and Stephens 2014). Most of these methods rely on multivari-

ate models to analyze multiple traits jointly. Unlike the commonly

used univariate methods that examine one trait at a time, multivari-

ate methods analyze multiple traits together while properly account-

ing for the phenotypic correlation among them. As a result,

multivariate methods often substantially improve association map-

ping power compared with univariate methods. For example, com-

pared with univariate analysis, multivariate analysis achieves �50%

power gain in mapping systolic blood pressure and other comorbid

traits (Andreassen et al., 2014) as well as in mapping multiple corre-

lated blood lipid traits (Stephens, 2013; Zhou and Stephens, 2014).

Applications of multivariate methods in GWASs have identified a

large number of pleiotropic associations (He et al., 2013; Solovieff

et al., 2013; Van der Sluis et al., 2015; Zhu et al., 2015).

Among the existing methods for pleiotropic association mapping,

mixture models have attracted substantial recent attention. Mixture

models attempt to classify genome-wide single nucleic polymor-

phisms (SNPs) into different categories based on their effect sizes on

the jointly analyzed traits. For example, the Bayesian co-localization

test (Giambartolomei et al., 2014) and its recent extension and imple-

mentation in the computational tool, gwas-pw (Pickrell et al., 2016)

(pair-wise traits analysis of GWAS), analyzes pairs of traits jointly. In

its simplified version, gwas-pw divides SNPs into those that are

associated with both traits (i.e. pleiotropic associations), associated

with only one trait and associated with neither. By partitioning SNPs

into different association categories and inferring the genome-wide

association pattern, mixture models can improve association map-

ping power (Andreassen et al., 2014; Giambartolomei et al., 2014).

In addition, by computing the proportion of SNPs in each category,

mixture models have the potential to provide evidence supporting

potential directional causality between the two analyzed phenotypes

(Pickrell et al., 2016). Specifically, if SNPs associated with the first

trait are also associated with the second trait, but not vice versa, then

the first trait may causally influence the second trait. Therefore, mix-

ture model methods can facilitate the identification and interpreta-

tion of pleiotropic associations and can help better characterize the

genetic relationship among traits (Chen et al., 2016a; Ernst and

Kellis, 2010; Ernst et al., 2011; Fu et al., 2014; Ionita-Laza et al.,

2016; Lonsdale et al., 2013; Lu et al., 2016).

Mixture models are recently extended to integrate external SNP

functional annotations to further improve power of pleiotropic map-

ping. For example, genetic analysis incorporating pleiotropy and

annotation (GPA) (Chung et al., 2014) and its gene-set analysis exten-

sion empirical Bayes approach for integrating pleiotropy and tissue-

specific information (EPS) (Liu et al., 2016) extend mixture models by

jointly modeling SNP association pattern together with the distribution

of the SNP functional annotations. SNP functional annotations are

developed to characterize the function of genetic variants (Dixon et al.,

2015; Kellis, et al., 2014; Lonsdale et al., 2013). For example, we can

now classify genetic variants based on their genomic location (e.g. cod-

ing, intron and intergenic variants), role in protein structure and func-

tion [e.g. sorting tolerant from intolerant (SIFT) score (Kumar et al.,

2009) or polymorphism phenotyping (PolyPhen) score (Adzhubei et al.,

2013)], ability to regulate gene expression [e.g. expression quantitative

trait loci (eQTL) and allele specific expression (ASE) evidence (Pickrell

et al., 2010; Tung et al., 2015)], biochemical function [e.g. DNase I

hypersensitive sites, metabolomic QTL evidence and chromatin states

(Ernst and Kellis, 2012; McVicker et al., 2013; Pique-Regi et al.,

2011)], evolutionary significance [e.g. genomic evolutionary rate profil-

ing (GERP) score (Cooper et al., 2005)] and/or a combination of all

these annotations [e.g. combined annotation dependent depletion

(CADD) score (Kircher et al., 2014) and Eigen score (Ionita-Laza et al.,

2016)]. These functional annotations can be important predictors for

SNP effects. Studies have shown that SNPs in certain functional catego-

ries (e.g. in promoters and enhancers) are more likely to be causal

(Pickrell, 2014; Schork et al., 2013), tend to have larger effect sizes and

explain more heritability than SNPs in other categories (e.g. introns)

(Gusev et al., 2014; Kichaev et al., 2014). Therefore, by integrating

functional annotations into pleiotropic association mapping, GPA can

identify enriched functional annotations for each SNP association cate-

gory, with which to further improve association mapping power

(Chung et al., 2014).

Despite the promising results from mixture models for pleio-

tropic association mapping, existing mixture methods have two

important limitations. First, perhaps rather surprisingly, existing

mixture methods do not account for phenotypic correlation among

jointly analyzed traits and effectively assume phenotypic independ-

ence. Given that explicit modeling of phenotypic correlation is the

key for effective association mapping and phenotype/risk prediction

of pleiotropic traits (Hu et al., 2017; Maier et al., 2015; Stephens,

2013), assuming phenotype independence likely reduces the effec-

tiveness of existing mixture models. Second, existing mixture models

are only able to integrate binary annotations and can only handle a

relatively small number of annotations. Analyzing only a few binary

annotations may fail to take advantage of the increasingly large
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number of annotations that are being generated today, among which

many are continuous (Ionita-Laza et al., 2016; Kircher, et al., 2014;

Li and Kellis, 2016; Roadmap Epigenomics Consortium, et al.,

2015; The ENCODE Project Consortium, 2012).

Here, we developed a novel mixture modeling method, which we

refer to as the integrative MApping of Pleiotropic association

(iMAP), for association mapping of pair-wise traits. iMAP relies on

a multinomial logistic regression model to incorporate a large num-

ber of binary and continuous SNP annotations, and, with a sparsity-

inducing penalty term, is capable of selecting a small, informative

set of annotations. In addition, iMAP directly models summary sta-

tistics from GWASs and uses a multivariate Gaussian distribution to

account for phenotypic correlation between traits. As a result, iMAP

is capable of integrating both binary and continuous SNP annota-

tions, selecting informative annotations from a large set of poten-

tially non-informative ones and using GWAS summary statistics

while simultaneously accounting for phenotypic correlation between

traits. We also adopt a recently developed efficient approximation

algorithm for penalized regression (Wang and Leng, 2007; Zeng

et al., 2014) to enable scalable inference in iMAP. With simulations,

we illustrate the benefits of iMAP in terms of both improving associ-

ation mapping power and accurate estimation of SNP association

patterns. Finally, we apply iMAP to analyze 48 traits from 31

GWAS consortium studies together with 40 tissue-specific SNP

annotations from the Roadmap epigenomics project (Roadmap

Epigenomics Consortium, et al., 2015). iMAP is freely available at

http://www.xzlab.org/software.html.

2 Materials and methods

We provide an overview of iMAP here, details are available in

Supplementary Text S1. Our main presentation of iMAP will focus

on analyzing pairs of traits that are measured on the same set of

individuals from a GWAS. Extensions of our method to situations

where the two traits come from different GWASs are trivial and are

presented in Supplementary Text S1. Extensions of our method to

analyzing more than two traits are not straightforward, with poten-

tial statistical and computational complications and will be dis-

cussed later in Section 4. For each SNP in turn, we consider the

following bivariate model:

yi ¼ bjgij þ eij; i ¼ 1; 2; . . . ; n; j ¼ 1; 2; . . . ; m;

eij � MVN2ð0; RjÞ;
(1)

where n is the number of individuals, m is the number of SNPs, yi is

a two-vector of phenotypes for individual i, gij is the genotype for

SNP j of individual i, bj is the corresponding two-vector of effect

sizes of SNP j on the two phenotypes, eij is a two-vector of residual

errors that follow a bivariate normal distribution with a two by two

covariance matrix Rj and MVN2 denotes a two-dimensional multi-

variate normal distribution (i.e. bivariate normal distribution).

iMAP naturally accounts for phenotypic correlation by modeling

the covariance matrix Rj. While Equation (1) is primarily aimed to

deal with quantitative traits, we also use Equation (1) to model

binary traits by treating binary data as continuous values following

many previous studies (Moser et al., 2015; Speed and Balding,

2014; Weissbrod et al., 2016; Zhou et al., 2013). Methodologically,

modeling binary data with linear model can be justified by the fact

that a linear model is a first order Taylor approximation to a gener-

alized linear model; and the approximation is accurate when the

SNP effect size is small (Zhou et al., 2013)—a condition that

generally holds as most complex phenotypes are polygenic and are

affected by many SNPs with small effects (Visscher et al., 2017).

The above model is specified on each SNP j. To infer genome-

wide pleiotropic association pattern and improve association map-

ping power, following (Chung et al., 2014; Pickrell et al., 2016),

we model all SNPs jointly by assuming that the joint likelihood for all

SNPs is simply a product of the likelihood for each SNP. The joint

likelihood approximation by the product of individual likelihoods can

be justified from a composite likelihood perspective (Larribe and

Fearnhead, 2011; Varin et al., 2011) (Supplementary Text S1). To

facilitate information sharing across genome-wide SNPs, we assign a

common prior on the effect sizes and assume that each bj a priori fol-

lows a four-component Gaussian mixture distribution:

bj � p11MVN2ð0; V11Þ þ p10MVN2ð0; V10Þ

þp01MVN2ð0; V01Þ þ p00d0;
(2)

with prior probabilities pk (k¼11, 10, 01 and 00) that sum to 1.

Here p11 represents the prior probability that a SNP is associated

with both traits; V11 ¼ ððr2
11; r2

21Þ
T ; ðr2

12; r2
22Þ

TÞ is a two by two

covariance matrix modeling the covariance of SNP effects on the

two traits. p10 represents the prior probability that a SNP is associ-

ated with the first trait but not the second; V10¼ ððr2
1; 0ÞT ; ð0; 0ÞTÞ

is a low-rank covariance matrix restricting that only the effect size

for the first trait is non-zero. p01 represents the prior probability

that a SNP is associated with the second trait but not the first; V01¼
ðð0; 0ÞT ; ð0; r2

2Þ
TÞ is a low-rank covariance matrix restricting non-

zero effect only for the second trait. Finally, p00 represents the prior

probability that a SNP is not associated with any traits; d0 denotes a

point mass at zero. We specify conjugate priors for the three hyper-

parameters V and we borrow information across genome-wide

SNPs to infer these parameters (Supplementary Text S1). The esti-

mated probability of a SNP having non-zero effects on any traits

(i.e. p11 þp10 þp01) is commonly referred to as the posterior inclu-

sion probability (PIP), which represents association evidence for the

given SNP. We use PIP to prioritize SNPs in this present study. We

also use PIP to provide a conservative estimate of false discovery

rate (FDR) (Benjamini and Hochberg, 1995) based on local FDR

(Efron et al., 2001) via the direct posterior probability approach

(Newton et al., 2004). FDR is a common approach applied for mul-

tiple testing settings. Effective control of FDR ensures that the pro-

portion of false discoveries among the identified SNP associations is

kept in check regardless of the number of tests performed. However,

we also note that an FDR of 0.05 can be less stringent than the usual

genome-wide P-value threshold of 5�10�8 that aims to control for

a family-wise error rate (FWER) of �0.05.

To increase association mapping power and facilitate association

results interpretation, we incorporate functional SNP annotations

from external data into the above model. To do so, we assume that

all SNPs are characterized by the same set of q annotations. For SNP

j, we denote xj ¼ (1, xj1, xj2, . . ., xjq)T as a (qþ1)-vector of annota-

tion values that include a value of 1 to represent the intercept. These

annotations can be either discrete or continuous. For example, one

annotation could be a binary indicator on whether a SNP resides in

exonic regions, while another annotation could be a continuous

value of the CADD (Kircher et al., 2014) or Eigen (Ionita-Laza

et al., 2016) score for the given SNP. To simplify presentation, we

assemble the annotation vectors across all SNPs into an m by (qþ1)

annotation matrix X, where each row of X contains the annotation

vector for the corresponding SNP. We then link the annotation

matrix X to the mixture probabilities (p11, p10, p01 and p00) through

a multinomial logit (mlogit) regression model

iMAP for integrative pleiotropic mapping 2799
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log ðpjkÞ /
Xqþ1

d¼0

xjdbkd ¼ xjbk; (3)

where k¼11, 10, 01 or 00; and each bk ¼ (b0, b1, b2, . . ., bq) is a

(qþ1)-vector of annotation coefficients that include an intercept.

We choose k¼00 as the reference category and set b00 ¼0 to ensure

model identifiability. Note that, in the case where SNPs belong to

only two categories (e.g. causal versus non-causal), the mlogit model

reduces to a logistic regression model that has been commonly used

to link functional annotations to SNP causality (Carbonetto and

Stephens, 2013; Wen et al., 2015, 2016). We use the mlogit model

here because it naturally extends the logistic model to cases where

SNPs can belong to more than two categories (e.g. four categories

here: k¼11, 10, 01 and 00).

With the growing number of SNP annotations nowadays, how-

ever, it becomes increasingly challenging to model all annotations in

the above mlogit model. Examining one annotation at a time

(Kichaev et al., 2014; Pickrell, 2014) does not take full advantage of

the correlation structure among annotations and may fail to prop-

erly account for multiple testing issue (Chen et al., 2016b). While

including all annotations jointly without any prior assumption may

incur heavy computational burden, reduce the degrees of freedom,

and lead to a potential loss of power. Here, to handle a large number

of annotations, we hypothesize that only a fraction of these annota-

tions are likely informative. Subsequently, we impose a penalty term

k
P

k

Pq
d¼1 jbkdj onto the log likelihood of model (3) to select the

important annotations via Lasso (Tibshirani, 1996) (Supplementary

Text S1; k is the tuning parameter).

We develop an expectation-maximization (EM) algorithm for

parameter inference in iMAP. Briefly, we view the mixture group

assignment of each SNP as missing data and impute them in the

expectation step. In the maximization step, we adopt the recently

developed computational strategy for the mlogit model (Hasan

et al., 2016) to take full advantage of the sparse structure of the

Hessian matrix, in order to estimate the annotation parameters b in

a computationally efficient fashion. In addition, we employ an effi-

cient approximation algorithm for lasso based on the least square

approximation (Wang and Leng, 2007; Zeng et al., 2014) to further

improve computational efficiency. We rely on the Bayesian informa-

tion criterion to select informative annotations. Details of our infer-

ence algorithm are provided in Supplementary Text S1.

Finally, we note that, while our main presentation of the model

and algorithm rely on individual-level phenotypes and genotypes,

iMAP can be fitted using only summary statistics in terms of mar-

ginal z scores for each phenotype (Supplementary Text S1). For

example, the phenotypic covariance matrix R can be estimated using

the sample covariance of marginal z scores from null SNPs

(Stephens, 2013). The EM algorithm can also be fitted using mar-

ginal z scores only. Therefore, in the following simulations, while

we use individual-level genotypes to simulate phenotypes, we obtain

marginal z scores afterward to fit iMAP. In the real data application,

we also use marginal z scores to fit iMAP.

3 Results

3.1 Simulation results
3.1.1 Power to identify associated SNPs

We first performed simulations to compare iMAP with other meth-

ods in terms of power to detect true associations. Simulations largely

follow previous studies (Chung et al., 2014) with details provided in

Supplementary Text S2. Briefly, we obtained 15 495 independent

SNPs in 10 000 individuals from the Kaiser Permanente/UCSF

Genetic Epidemiology Research Study on Adult Health and Aging

(GERA) study (Banda et al., 2015). Among these SNPs, we consid-

ered 500 to be causal for each trait, generated causal effects inde-

pendently from a normal distribution and summed simulated

residual errors to form the two traits. Due to the small number of

individuals, to ensure sufficient power, our main simulations consid-

ered cases where the proportion of phenotypic variance of each phe-

notype explained (PVE) (Zhou et al., 2013) by all causal SNPs is

0.50. However, in some scenarios, we also performed additional

simulations to examine cases where the PVE by all causal SNPs is

0.20. To allow for pleiotropic associations, these 500 causal SNPs

were selected in a way that a certain proportion of them (in the

range of 0–100%, with 20% increments) have non-zero effects on

both traits. To allow for phenotypic correlation, the residual errors

were generated from a bivariate normal distribution with a fixed

covariance. Besides phenotypes, we also simulated two sets of con-

tinuous SNP annotations: an informative set where annotation val-

ues are dependent on SNP causality and another non-informative set

where annotations do not depend on SNP causality. Overall, the

simulation strategy employed here substantially deviates from our

own modeling assumption; instead, it largely follows the modeling

assumption employed in GPA (Chung et al., 2014). With the geno-

types and simulated phenotypes, we obtained marginal z scores and

paired them with SNP annotation information to run analysis. We

performed 100 simulation replicates for each setting. We considered

four different methods for comparisons (Supplementary Text S1): (i)

univariate analysis that fits a linear model on each trait separately;

(ii) gwas-pw (Pickrell et al., 2016); (iii) GPA (Chung et al., 2014);

and (iv) iMAP. We computed the power to detect causal SNPs at the

FDR of 0.05 (or 0.10).

We consider three sets of simulations. We performed the first set

of simulations to illustrate the benefits of modeling phenotypic cor-

relation between traits. To do so, we varied the residual error cova-

riance between the two simulated traits from �0.8 to 0.8 (¼�0.8,

�0.5, �0.2, 0, 0.2, 0.5, 0.8) to introduce negative or positive pheno-

typic correlations. We did not include any annotations in simula-

tions here to exclude the influence of annotation on power

comparison. In the simulations, all methods provide slightly conser-

vative estimates of FDR at the given level of 0.05 or 0.10

(Supplementary Fig. S1), suggesting proper control of FDR by these

methods. We also show power of different methods at a fixed FDR

of 0.05 for positive phenotypic correlations in Figure 1A. The corre-

sponding results for FDR of 0.10 are shown in Supplementary

Figure S2, while the corresponding results with negative phenotypic

correlations are shown in Supplementary Figures S3 and S4; both

sets of results are similar to Figure 1A. Based on Figure 1A, we also

contrast iMAP with GPA and display the power gain of iMAP in

Figure 1B. In terms of power, both the proportion of pleiotropic

effects and phenotypic correlation influence the relative power

among methods. First, in the absence of pleiotropic effects, the

power of iMAP and GPA is comparable with each other and with

that of univariate analysis. However, both iMAP and GPA outper-

form the univariate analysis in the presence of pleiotropic effects.

Second, when phenotypes are independent, the power of iMAP and

GPA is comparable with each other. However, with increasing phe-

notypic correlation, the power of iMAP improves while the power

of GPA (and gwas-pw) decays, highlighting the importance of

explicit modeling of phenotypic correlation. We notice that gwas-

pw is often underpowered when compared to GPA and iMAP, even

if we performed simulations according to the gwas-pw study

(Supplementary Text S2; Supplementary Fig. S5). We attribute the
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relatively low power of gwas-pw to the fact that gwas-pw was not

originally designed as an association mapping method.

We performed the second set of simulations to illustrate the ben-

efits of using the original continuous SNP annotations versus dichot-

omizing them into binary ones. To do so, we simulated four sets of

informative SNP annotations that all have continuous values. We

used these continuous annotations directly for iMAP but dichotom-

ized them into binary annotations for GPA, as GPA can only take

binary annotations. For both GPA and iMAP, we considered settings

where 0–4 annotations were incorporated into the model. To mini-

mize the influence of phenotypic correlation on comparison, we set

the residual error covariance to be 0 and used independent traits.

The power of different methods at FDR¼0.05 is shown in

Figure 1C. The corresponding results for FDR¼0.10 are shown in

Supplementary Figure S6. We also contrast iMAP with GPA and dis-

play the power gain of iMAP in Figure 1D. Again, all methods pro-

vide reasonably and slightly conservative estimate of FDR

(Supplementary Fig. S7). In terms of power, GPA and iMAP perform

similarly as the univariate analysis in the absence of annotations and

pleiotropic SNPs. Both GPA and iMAP outperform the univariate

analysis in the presence of pleiotropic SNPs or when annotations are

available. Importantly, because iMAP models the original continu-

ous annotations directly, iMAP is slightly more powerful than GPA

in the presence of annotations and its power gain increases with

increasing number of informative annotations. For example, when

the proportion of pleiotropic SNPs is 20%, the average power gain

of iMAP versus GPA is 0.371, 1.82, 3.43 or 6.12%, when 1-4 anno-

tations are incorporated, respectively (Fig. 1D). The power differ-

ence between iMAP and GPA is mainly due to the use of continuous

annotations, as iMAP and GPA are comparable to each other when

the same set of binary annotations were used (Supplementary Fig.

S8). Besides the main setting where the PVE by all causal SNPs was

set to be 0.5, we also examined small effect settings where the PVE

by all causal SNPs was set to be only 0.2. The power of all the com-

pared methods is low in this setting, although the rank among the

compared methods remains the same (Supplementary Fig. S9).

Finally, we performed a third set of simulations to illustrate the

benefits of annotation selection when a large number of annotations

are present. To do so, we used the same four informative annota-

tions above and simulated a large number (100) of non-informative

annotations whose values were independent of SNP causality.

Again, we set the residual error covariance to be 0 and used inde-

pendent traits. iMAP analyzes all annotations jointly through a

penalized regression framework to select informative ones among

them. To better understand the effectiveness of annotation selection,

besides the standard iMAP, we also considered three variations of

iMAP in method comparison: (i) an iMAP-naı̈ve method that does

not incorporate any annotation; (ii) an iMAP-full method that

naively incorporates all annotations without selection; and (iii) an

iMAP-oracle method that uses only the four informative annota-

tions. For additional comparison, we also considered different ways

of applying GPA: (i) GPA-naı̈ve that does not include any annota-

tion; (ii) GPA-select that examines one annotation at a time, com-

putes for each annotation a likelihood ratio statistic and uses a

likelihood ratio statistic cutoff of 12 (which corresponds to an

approximate P-value of 5.0�10�4) to select a set of informative

annotations that are further included into the GPA model for a final

analysis; note that the original GPA method does not provide this

option; (iii) GPA-full that includes all annotations to the model; and

(iv) GPA-oracle where the correct four informative annotations are

supplied. Note that the oracle version of GPA and iMAP represents

an upper limit of power for the two methods. Here, we did not con-

sider the univariate analysis and gwas-pw as the two methods can-

not handle annotations and were generally less powerful compared

to GPA and iMAP. We display the power comparison results among

different variations of iMAP and GPA in Figure 1E and F and

Supplementary Figure S10. A few patterns are obvious. First, in the

presence of a large number of annotations, approaches that naively

model all annotations together (i.e. iMAP-full and GPA-full) are

often much less powerful compared to approaches that do not con-

sider annotations at all (i.e. iMAP-naı̈ve and GPA-naı̈ve), suggesting

that the small degree of freedom in the full model impairs model per-

formance. Second, approaches that select annotations (i.e. iMAP

and GPA-select) almost always result in a great power gain com-

pared to naı̈ve approaches (i.e. iMAP-naı̈ve and GPA-naı̈ve), and

can often achieve similar power as the corresponding oracle models

(i.e. iMAP-oracle and GPA-oracle). The competent performance of

selection approaches highlights the importance of performing anno-

tation selection. Importantly, even with annotation selection, iMAP

and GPA still provide effective estimate of FDR (Supplementary Fig.

S11). Finally, iMAP relies on the formal Lasso penalty to perform

annotation selection and is more powerful than GPA-select which

relies on a simpler procedure to select annotations (Fig. 1F). The

comparative results between iMAP and GPA-select are consistent

with early literature on Lasso being more effective compared with

the subset selection approach (Tibshirani, 1996; Zeng, et al., 2014;

Zou, 2006). Importantly, iMAP is capable of selecting the

A B

C D

E F

Fig. 1. Comparison of power in detecting associated SNPs by various meth-

ods in simulations. In all simulations, the proportion of pleiotropic causal

SNPs varies from 0% to 100% (x-axis). Power is measured at a fixed FDR of

0.05. (A) Power of four methods (univariate analysis, gwas-pw, GPA and

iMAP) in the setting where the two traits are positively correlated. For each

method, the four boxplots at each pleiotropic proportion level correspond to

four different phenotypic covariance values of 0, 0.2, 0.5 and 0.8, respectively.

(B) Power gain of iMAP with respect to GPA computed based on panel (A).

(C) Power of four methods (univariate analysis, gwas-pw, GPA and iMAP) in

the presence of informative annotations. Variations of GPA and iMAP that

incorporate a different number of annotations (0, 1, 2 and 4) are also pre-

sented. (D) Power gain of iMAP with respect to GPA computed based on

panel (C). (E) Power of GPA and iMAP in the presence of four informative

annotations and 100 noninformative annotations. Different variations of

GPA and iMAP are considered: the naı̈ve version does not incorporate any

annotations; the full version includes all the annotations; the select version

performs annotation selection; and the oracle version uses the four informa-

tive annotations. (F) Power gain of iMAP with respect to GPA computed based

on panel (E)
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informative annotations with high precision and can accurately esti-

mate the annotation coefficients (Table 1 and Supplementary Fig.

S12). While our main simulation setting uses four independent

annotations with relatively large effects, we also examined a setting

where we include ten independent annotations with relatively small

effects along with another 100 null annotations. As expected,

because of small annotation effects, the accuracy to select the true

annotations in this setting reduces substantially. However, the rela-

tive performance of various methods remains the same, with iMAP

greatly outperforming iMAP-full (Supplementary Table S2). We

also assessed the performance of iMAP in a four-annotations setting

where the first two annotations are correlated with each other and

the second two annotations are also correlated with each other, with

correlation coefficient varying from 0.2 to 0.8. The 100 null annota-

tions are independent each other and are not correlated to the four

true annotations. When correlation is low or moderate (e.g. 0.2 or

0.5), the accuracy of various methods reduces slightly with ranking

among them remaining the same. In contrast, when correlation is

high (e.g. 0.8), while iMAP outperforms iMAP-full in most cases, it

can occasionally perform worse than iMAP-full (Supplementary

Table S3). The results with correlated annotations are consistent

with those observed previously and can be improved when by

replacing the selection method Lasso with, for example, Elastic Net

(Zou and Hastie, 2005).

3.1.2 Estimating causal SNP proportions and annotation

coefficients

A key feature of mixture models is that they can provide estimates

for the proportion of SNPs that have various effects on the two phe-

notypes. These proportion estimates can help shed light on the

genetic architecture of complex traits. In terms of iMAP, we are

often interested in estimating: p11, the proportion of pleiotropic

SNPs that are associated with both traits; p10 (or p01), the propor-

tion of SNPs that are associated with only one trait; and p11/

(p10þp11) [or p11/(p01þp11)], the proportion of SNPs associated

with one trait that are also associated with the other. The last quan-

tity has been used to evaluate causality of one trait on the other

(Pickrell et al., 2016). Specifically, a large p11/(p10þp11) and a small

p11/(p01þp11) suggest that a large fraction of SNPs associated with

the first trait is also associated with the second trait, but not vice

versa, indicating that the first trait may causally affect the second

trait. A small p11/(p10þp11) and a large p11/(p01þp11) indicate that

the second trait may causally affect the first trait. On the other

hand, a large p11/(p10þp11) and a large p11/(p01þp11) indicate that

both traits may share common biological pathways. While we cau-

tion against the causal interpretation of p11/(p10þp11) [or

p11/(p01þp11)] in association studies, we do consider p11/(p10þp11)

[or p11/(p01þp11)] as a useful quantity to be estimated along with

the original parameters p11, p10 and p01. To compare method per-

formance in estimating the above quantities, we focused on the sec-

ond simulation setting described in the previous section and applied

three different methods (gwas-pw, GPA and iMAP) to examine their

performance in the presence of annotations. For better visualization,

we contrast the estimated values with the true values and show their

differences in Figure 2A–C. Overall, iMAP generates estimates that

are slightly closer to the truth than either GPA or gwas-pw across a

range of pleiotropic SNP proportions and various numbers of anno-

tations. The slightly accuracy gain in iMAP is likely due to its higher

power in identifying SNP associations.

3.2 Results of real data applications
3.2.1 Real data and annotations

We applied our method to analyze 48 traits from 31 GWASs

(Supplementary Table S1). These traits span a wide range of pheno-

types that include anthropometric traits [e.g. height and body mass

index (BMI)], hematopoietic traits [e.g. mean cell haemoglobin con-

centration (MCHC) and red blood cell count (RBC)], immune diseases

[e.g. Crohn’s disease (CD) and inflammatory bowel disease (IBD)],

and neurological diseases [e.g. Alzheimer’s disease and schizophrenia).

Table 1. Accuracy of iMAP in selecting informative annotations and

in estimating the annotation coefficients in the setting where four

independent annotations with relatively large effects are present

Proportion of

pleiotropic causal

SNPs (%)

True False MSE

Oracle Select Full

0 3.53 0.38 0.05 0.28 383.52

20 7.81 0.53 0.41 2.38 300.15

40 9.72 1.20 0.29 2.03 68.63

60 5.77 0.81 0.31 2.58 12.53

80 4.98 0.75 0.56 2.70 17.46

100 3.15 0.37 0.12 2.17 18.38

Note: Simulations were carried out in the presence of four informative

annotations and 100 non-informative annotations for various proportion of

pleiotropic causal SNPs (rows). The ‘True’ column lists the number of selected

correct non-zero annotation parameters inside the mlogit model. Note that a

total of 12 (¼ 3� 4) non-zero annotation parameters are expected in the pres-

ence of four informative annotations. The ‘False’ column lists the number of

selected incorrect non-zero annotation parameters. MSE denotes the median

squared error for the estimated annotation parameters across 100 simulation

replicates for three different versions of iMAP: the oracle version uses the four

informative annotations; the select version performs annotation selection; and

the full version includes all annotations without selection.

A B

C D

Fig. 2. Estimation accuracy for the proportions of different SNP association

categories by different methods in simulations. Methods for comparison

include gwas-pw, GPA and iMAP. Because four informative annotations are

present, we considered variations of GPA and iMAP that incorporate a differ-

ent number of annotations (0, 1, 2 and 4). The difference between the esti-

mated values and truth (y-axis) are computed for various settings where the

proportion of pleiotropic causal SNPs varies from 0% to 100% (x-axis).

Different quantities of interest are considered: (A) p11, the proportion of SNPs

associated with both traits; (B) p10, the proportion of SNPs associated with

only the first trait; (C) p11/(p11þp10), the proportion of SNPs associated with

the first trait that are also associated with the second trait; (D) estimated

parameters for the informative annotations
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We obtained summary statistics for these traits. We also obtained a

total of 40 annotations based on genome-wide occupancy information

of four histone marks (H3K27me3, H3K36me3, H3K4me1 and

H3K4me3) in 10 tissue groups (blood/immune, adipose, adrenal/

pancreas, bone/connective, cardiovascular, CNS, gastrointestinal,

liver, muscle and other) from the Roadmap Epigenomics Project

(Roadmap Epigenomics Consortium et al., 2015). Data processing

details are provided in Supplementary Text S2. We analyzed each of

the 1128 trait pairs with different methods. Methods considered

include univariate analysis, gwas-pw, GPA and iMAP. For iMAP, we

considered two different approaches. The first approach (iMAP-naı̈ve)

did not integrate any histone annotation while the second approach

(iMAP) analyzed all histone annotations jointly with penalized selec-

tion. Because GPA can only examine a small number of histone anno-

tations, to allow for a fair comparison, we applied GPA-select using

the same screening procedure described in the simulations section and

included all the selected histone annotations into the GPA model for a

final analysis. For all methods, we declared association significance

based on an estimated FDR of 0.1%.

3.2.2 Integrative analysis by iMAP improves association

mapping power

We computed the number of significant associations detected by dif-

ferent methods for each trait pair (Fig. 3). These results are based on

an estimated FDR of 0.05, which can be less stringent than the usual

5�10�8 P-value threshold that aims to control for an FWER of

approximately 0.05. Consistent with simulations, iMAP detected

more associations than any other methods. Specifically, iMAP iden-

tified an average of 658 associated SNPs across trait pairs (Fig. 3A),

while iMAP-naı̈ve, GPA-select, gwas-pw and univariate analysis

identified 580, 463, 232 and 358 associated SNPs, respectively. In

addition, iMAP is ranked as the best method in terms of identifying

the largest number of associated SNPs in 703 (62.3%) trait pairs out

of the 1128 total (Fig. 3B–E), while iMAP-naı̈ve, GPA-select, gwas-

pw and univariate analysis were ranked as the best in 7 (0.6%), 217

(19.2%), 200 (17.7%) and 1 (0.09%) trait pairs, respectively.

Among the associated SNPs, an average of 3.8% (25) of them has

pleiotropic associations with both traits. The proportion of

pleiotropic SNPs is similar whether annotations were accounted for

or not; indeed, iMAP-naı̈ve also identified an average of 2.9% (17)

SNPs to have pleiotropic associations with both traits. The relatively

small proportion of pleiotropic associations detected by iMAP is

consistent with previous studies (Sivakumaran et al., 2011).

However, among biological related traits, the proportion of pleio-

tropic associations can be large (Supplementary Fig. S13). For exam-

ple, among pairs of lipid traits [high-density lipoproteins (HDL),

low density lipoproteins (LDL), total cholesterol (TC) and triglycer-

ides (TG)], iMAP identified an average of 24.5% (522) SNPs associ-

ated with two traits. Similarly, iMAP-naı̈ve identified an average of

19.9% (364) SNPs associated with two traits.

As an illustrative example, we display a local genetic region that

harbors a pleiotropic association for the trait pair of HDL and TG.

HDL and TG are blood metabolic phenotypes that are biologically

related and have been previously shown to share a common genetic

background (Bulik-Sullivan et al., 2015; Pickrell et al., 2016;

Teslovich et al., 2010). For the joint analysis of HDL-TG, iMAP

identified a total of 2305 associated SNPs, among which 376

(15.9%) of them are pleiotropic associations. The identified associ-

ated SNPs span a total of 51 loci (Supplementary Table S4), among

which 44 were previously known to be associated with either HDL

or TG (MacArthur, et al., 2017). For illustration purpose, we dis-

play in Supplementary Figure S14 a genomic region centered at a

pleiotropic SNP, rs1809167, which resides near the gene TRIB1 on

8q24.13. TRIB1 is a protein-coding gene that is associated with

multiple lipid traits and cardiovascular disease (MacArthur, et al.,

2017; Soubeyrand, et al., 2016; Teslovich, et al., 2010). In the anal-

ysis, when we did not include SNP annotations, the PIP of

rs1809167 computed by iMAP-naı̈ve is only 0.753 (Supplementary

Fig. S14A), below the genome-wide significance threshold

(PIP¼0.936, which corresponds to an FDR of 0.1%). After includ-

ing SNP annotations, however, the PIP of the same SNP computed

by iMAP increases to 0.988 (Supplementary Fig. S14B), which

passes the genome-wide significance threshold. Therefore, by inte-

grating SNP functional annotations, iMAP has the potential to iden-

tify associations that may otherwise be missed by iMAP-naı̈ve. In

this analysis, iMAP also selected four histone annotations from three

tissues to be relevant to the two traits, and these four annotations

include blood/immune H3K36me3 and H3K4me1, bone/connective

H3K36me3 and liver H3K4me1. The estimated annotation coeffi-

cients of the four annotations are shown in Supplementary Figure

S14B. Importantly, we find that the estimated effects of liver

H3K4me1 and bone/connective H3K36me3 are larger than the

other two annotations, suggesting that liver and bone/connective

may play an important role in the biology of HDL and TG, consis-

tent with previous findings (Kozlitina et al., 2014; Lories et al.,

2013; Rivadeneira and Mäkitie, 2016; Roman et al., 2015).

3.2.3 iMAP identifies important histone annotations relevant to

complex traits

Next, we examine the important histone annotations selected by

iMAP across all trait pairs. iMAP selected at least one histone anno-

tation for most pairs of traits examined (99.6%). On average, it

selected 2.8 histone annotations (median¼2.0) that influence the

probability of a SNP to be associated with one trait and selected

0.20 histone annotations (median¼0) that influence the probability

of a SNP to be associated with both traits. The small number of his-

tone annotations selected in the later case is likely due to the rela-

tively small number of pleiotropic SNPs and the subsequent low

statistical power there. To examine individual histone annotations,

A

C D E

B

Fig. 3. Power comparison among methods for the 1128 trait pairs analyzed in

the real data application. Methods for comparison include: univariate, gwas-

pw, GPA-select, iMAP-naı̈ve and iMAP. (A) Boxplots show the number of

associated SNPs that pass the genome-wide significance threshold identified

by various methods across 1128 trait pairs. The number of associated SNPs

identified by iMAP for each trait pair is also plotted against that identified by

(B) univariate, (C) gwas-pw, (D) GPA-select and (E) iMAP-naı̈ve
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for each histone annotation in turn, we counted the proportion of

times that the histone annotation of interest was selected by iMAP

across all analyzed trait pairs. In addition, we obtained the coeffi-

cient estimates for these selected histone annotations. Intuitively, if a

histone annotation is an important predictor of SNP association,

then it would be selected more often than the other non-important

ones. In addition, it would have a higher estimated annotation coef-

ficient than the others. We show both the coefficient estimates and

the probability of being selected for the four histone annotations in

Figure 4A. Specifically, across all tissues, H3K36me3 and H3K4me1

are selected more often than H3K27me3 and H3K4me3 (47.3% and

33.1% of the times versus 9.97% and 9.59% of the times). In addi-

tion, the estimated annotation coefficients of H3K36me3 and

H3K4me1 are also larger than those of H3K27me3 and H3K4me3

(an average of 0.158 and 0.168 versus an average of 0.036 and

0.077). Both results are consistent with the important role of

H3K36me3 and H3K4me1 in marking promoter or enhancer

regions that are known to be predictive of SNP causality from pre-

vious univariate analyses (Roadmap Epigenomics Consortium,

et al., 2015; The ENCODE Project Consortium, 2012).

To further investigate trait-relevance of these histone annota-

tions, for each trait/histone annotation pair in turn, we counted the

proportion of times that the particular histone annotation was

selected to have non-zero effects in all trait pairs that involve the

trait of interest. The resulting value, which we simply refer to as the

trait relevance score, is in the range of 0 and 1 and represents

the relevance of the specific histone annotation to the given trait.

Because histone annotations are tissue-specific, the resulting rele-

vance scores also quantify trait-tissue relevance for trait tissue pairs.

Results show that SNP associations in some traits are primarily

predicted by histone annotations in a single tissue, while associa-

tions in other traits are predicted by histone annotations in a range

of tissues (Fig. 4B). For example, SNP associations in many immune

diseases (e.g. UC, CD, IBD, T1D, Lupus, PBC and RA) are primarily

related to two histone annotations, H3K36me3 and H3K4me1, in

the blood/immune tissue. Associations for most anthropometric

traits (e.g. Height, BMI2, FNBMD, LSBMD, BMI1, BW2, G10,

GPC and Obesity) can be predicted by marks in both the bone/con-

nective and CNS tissues. Psychiatric disorders (e.g. SCZ, BPSCZ and

BIP) are related to both blood/immune and CNS tissues. Lipids-

related traits and diseases (e.g. HDL, LDL, TC, TG, CAD and

X2hrGlucose) are related to blood/immune, bone/connective, gas-

trointestinal and liver tissues. While hematopoietic traits (e.g.

MCHC, MCH, HB, MCV, MPV, PCV, PLT and RBC) are related

to blood/immune, gastrointestinal and bone/connective tissues.

Overall, the results are largely consistent with previous univariate

analyses and reveal the complexity of trait-tissue relevance

(Bradfield et al., 2011; Liu et al., 2015; Teslovich et al., 2010).

3.2.4 iMAP characterizes genetic relationship between pair of traits

Finally, we examine the estimated p11/(p10þp11) [or p11/(p01þp11)]

values across all trait pairs. The proportion p11/(p10þp11) [or p11/

(p01þp11)] can be asymmetric between any two traits and have been

used to infer causality between the two traits (Pickrell et al., 2016).

The proportions estimated by iMAP are shown in Figure 5 and are

largely consistent with the estimates by iMAP-naı̈ve (Supplementary

Figs S15A–C also show the proportions estimated by gwas-pw and

GPA-select). In either case, the estimated proportions are largely

symmetric, though with substantial asymmetric patterns. In particu-

lar, among all trait-pairs, 331 (29.3%) of them have an asymmetric

pattern with the difference between the two proportions estimated

to be larger than 10%. For example, the estimated proportions of

SNPs associated with FG and HDL that are also associated with

T2D are 0.983 and 0.507, respectively. On the other hand, the esti-

mated proportions of SNPs associated with T2D that are also associ-

ated with FG and HDL are 0.568 and 0.058, respectively. The large

proportion estimates between T2D and FG suggest that T2D and

FG may share common biological pathways (Solovieff et al., 2013).

Fig. 4. Annotation selection in the real data application. (A) Estimated annota-

tion effect sizes for the selected annotations across all analyzed trait pairs. On

top of the boxplots lists the percentage of times a histone annotation is

selected across these trait pairs. (B) Relevance score for each annotation

(rows) across all traits (columns). The relevance score quantifies the impor-

tance of an annotation for a particular trait of interest and is computed based

on analysis of all trait pairs

Fig. 5. Estimated probability that a SNP associated with one trait (y-axis) is

also associated with the other trait (x-axis), for 48 trait pairs in the real data

application. Results are based on iMAP that performs annotation selection

among 40 annotations
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In contrast, the fact that SNPs associated with HDL often are also

associated with T1D, but not vice versa, suggests that HDL may

mediate SNPs effects onto T1D (Solovieff et al., 2013). As another

example, the estimated proportions of SNPs associated with the four

blood lipid traits (HDL, LDL, TC and TG) that are also associated

with CAD are high (0.669, 0.681, 0.815 and 0.724, respectively). In

contrast, the proportions of SNPs associated with CAD that are also

associated with the four blood lipid traits are small (0.068, 0.066,

0.064 and 0.096, respectively). The asymmetric relationship

between lipid traits and CAD again suggests that lipid traits may

mediate SNP effects onto CAD, consistent with previous findings

(Bjornsson et al., 2017; Pickrell et al., 2016; Willer, et al., 2008).

4 Discussion

We have presented a penalized Gaussian mixture model method,

iMAP, which incorporates functional annotations for association

mapping of pair-wise traits. iMAP properly accounts for phenotypic

correlation, models association pattern across genome-wide SNPs,

can accommodate both continuous and binary annotations, while

capable of selecting informative annotations among a large set.

iMAP is particularly useful for integrative analyses of GWAS sum-

mary statistics with a potentially large number of SNP annotations.

While we have mainly focused on the use of Lasso (Tibshirani,

1996) for annotation selection, we have implemented the Elastic

Net (Zou and Hastie, 2005) in the software to improve the perform-

ance of iMAP in the presence of correlated annotations. In addition,

we have implemented the standard iMAP model without annotation

input, so that the users can access the contribution of likelihood ver-

sus prior from annotation in the final association results. iMAP is

also reasonably fast in the real data: it takes an average of 48 min

(median¼45 min) to analyze a pair of traits in the presence of one

annotation and takes an average of 7.2 h (median¼4.8 h) when 40

annotations are used. With extensive simulations and real data

application to 48 GWAS traits, we have illustrated the benefits of

iMAP in terms of improving association mapping power, identifying

important annotations, revealing genetic architecture underlying

complex traits, as well as investigating relationship among

phenotypes.

Throughout the text, we have used FDR thresholds to identify

significant associations. While using FDR allows us to fairly com-

pare the power of different methods based on the same threshold,

using FDR also requires care in results interpretation for two rea-

sons. First, compared to the commonly used P-value threshold of

5�10�8 that controls for an FWER of �0.05, depending on the

number of identified SNPs and the number of total SNPs, an FDR of

0.05 can be less stringent and can lead to the identification of unex-

pected many associated variants (Brzyski et al., 2017).

Consequently, the identified associations based on an FDR of 0.05

may suffer from lower replication rate as compared to those identi-

fied based on a P-value threshold of 5�10�8. Second, compared to

FWER control, FDR control does not have the sub-setting property

(Goeman and Solari, 2014). Specifically, because FWER controls for

the probability of making a type I error, a FWER control at any level

on the entire set of the identified SNPs guarantees the same (or more

stringent) FWER level on any subset of the identified SNPs, regard-

less of SNP association evidence measured by p-value within the

subset (Goeman and Solari, 2014). In contrast, FDR controls for the

expected proportion of false discoveries, and an FDR control at any

level on the entire set of the identified SNPs does not guarantee the

same FDR level on any subset of the identified SNPs. In particular,

SNPs with low PIP will have high local FDR, and consequently, the

subset of identified SNPs with low PIP will have higher FDR than

what is controlled for on the entire set. Therefore, for FDR control,

we recommend examining PIP as additional association evidence

within the identified SNP set. We highlight these two important dif-

ferences between FWER and FDR to help practitioners better inter-

pret the results from iMAP and other Bayesian methods that rely on

FDR for error control.

In this study, we have mainly focused on the relatively simple

task of analyzing pairs of traits. Extensions of iMAP to analyzing

more than two traits may seem trivial conceptually, but present

important statistical and computational challenges that need to be

properly addressed. Specifically, with increasing number of traits

(d), the number of possible association patterns increases exponen-

tially (2d): a SNP can be associated with none of the traits, with any

one trait, with any two traits, . . ., or with all traits. Unfortunately,

direct and naı̈ve modeling of the large number of possible associa-

tion patterns would require an exponentially large number of p
parameters and an exponentially large number of annotation coeffi-

cients inside the mlogit model. Employing a large number of param-

eters not only would reduce the degrees of freedom and

subsequently power but also imposes computational hurdles (e.g.

the computational complexity of iMAP also scales exponentially to

the number of traits). Therefore, additional modeling assumptions

on the possible association patterns are necessary to enable efficient

and powerful analysis. Previous methods developed in eQTL map-

ping setting for identifying eQTLs in multiple tissues (Flutre et al.,

2013) have suggested that using either sparse (that a SNP is only

associated with a small set of phenotypes) or group-structured (that

there exist a number of phenotype groups, where a SNP is either

associated with all phenotypes within the same group or associated

with none of them) effect size assumptions are effective in modeling

association patterns across tissues. Adapting these eQTL mapping

methods to association mapping of pleiotropic effects is an interest-

ing future avenue to explore.

Like previous other mixture methods (Chung et al., 2014;

Pickrell et al., 2016), iMAP makes a key assumption that the joint

likelihood for all SNPs is a simple product of the likelihoods from

every SNP. However, because SNPs are in linkage disequilibrium

(LD) and their genotypes are correlated with each other (Wall and

Pritchard, 2003), assuming a simplified form of the joint likelihood

is unrealistic. To examine whether iMAP remains effective under

LD, we have performed a series of simulations using correlated

SNPs instead of independent ones (Supplementary Text S2). Briefly,

we show that the power comparison results among methods are rel-

atively stable with respect to LD and that iMAP still outperforms

the other methods in identifying associated SNPs in the presence of

LD. However, LD strongly influences the estimation of the propor-

tions of causal SNPs in different association categories, and none of

the methods examined here are accurate in estimating the causal

proportions in the presence of LD (Text S2). We have attempted to

improve the estimation of causal SNPs proportions by incorporating

LD information as weights for the SNP likelihoods as suggested in

(Liley et al., 2017). However, we found that using either LD scores

(Finucane, et al., 2015) or linkage disequilibrium adjusted kinships

(LDAK) weights (Speed et al., 2012) does not improve the accuracy

in causal SNP proportion estimation. Besides the weighted likeli-

hood, we have also attempted to prune SNPs before performing

analysis for estimating causal SNP proportions (Nishino et al.,

2018). However, we found that the results from pruning can be

unstable depending on how causal SNPs were simulated. Therefore,

we view it as an important direction in the future to incorporate LD
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pattern into iMAP or other mixture model methods in a principled

way. Such extension, together with efficient algorithmic innova-

tions, will facilitate the accurate estimation of causal SNP propor-

tion in various association categories and will likely further improve

the power in fine mapping of pleiotropic traits (Kichaev and

Pasaniuc, 2015; Kichaev et al., 2014; Spain and Barrett, 2015).
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Rivadeneira,F. and Mäkitie,O. (2016) Osteoporosis and bone mass disorders:

from gene pathways to treatments. Trends Endocrinol. Metabol., 27, 262–281.

Roadmap Epigenomics Consortium. et al. (2015) Integrative analysis of 111

reference human epigenomes. Nature, 518, 317–330.

Roman,T.S. et al. (2015) Multiple hepatic regulatory variants at the GALNT2

GWAS locus associated with high-density lipoprotein cholesterol. Am. J.

Hum. Genet., 97, 801–815.

Schork,A.J. et al. (2013) All SNPs are not created equal: genome-wide associa-

tion studies reveal a consistent pattern of enrichment among functionally

annotated SNPs. PLoS Genet., 9, e1003449.

Sivakumaran,S. et al. (2011) Abundant pleiotropy in human complex diseases

and traits. Am. J. Hum. Genet., 89, 607–618.

Smith,E.N. et al. (2010) Longitudinal genome-wide association of cardiovas-

cular disease risk factors in the Bogalusa heart study. PLoS Genet., 6,

e1001094.

Solovieff,N. et al. (2013) Pleiotropy in complex traits: challenges and strat-

egies. Nat. Rev. Genet., 14, 483–495.

Soubeyrand,S. et al. (2016) TRIB1 is regulated post-transcriptionally by pro-

teasomal and non-proteasomal pathways. PLoS ONE, 11, e0152346.

Spain,S.L. and Barrett,J.C. (2015) Strategies for fine-mapping complex traits.

Hum. Mol. Genet., 24, R111–R119.

Speed,D. et al. (2012) Improved heritability estimation from genome-wide

SNPs. Am. J. Hum. Genet., 91, 1011–1021.

Speed,D. and Balding,D.J. (2014) MultiBLUP: improved SNP-based predic-

tion for complex traits. Genome Res., 24, 1550–1557.

Stephens,M. (2013) A unified framework for association analysis with multi-

ple related phenotypes. PLoS One, 8, e65245.

Teslovich,T.M. et al. (2010) Biological, clinical and population relevance of

95 loci for blood lipids. Nature, 466, 707–713.

The ENCODE Project Consortium. (2012) An integrated encyclopedia of

DNA elements in the human genome. Nature, 489, 57–74.

The Wellcome Trust Case Control Consortium. (2007) Genome-wide associa-

tion study of 14,000 cases of seven common diseases and 3,000 shared con-

trols. Nature, 447, 661–678.

Tibshirani,R. (1996) Regression shrinkage and selection via the LASSO. J. R.

Stat. Soc. Ser. B, 58, 267–288.

Tung,J. et al. (2015) The genetic architecture of gene expression levels in wild

baboons. Elife, 4,

van der Sluis,S. et al. (2013) TATES: efficient multivariate genotype-phenotype

analysis for genome-wide association studies. PLoS Genet, 9, e1003235.

Van der Sluis,S. et al. (2015) MGAS: a powerful tool for multivariate

gene-based genome-wide association analysis. Bioinformatics, 31,

1007–1015.

Varin,C. et al. (2011) An overview of composite likelihood methods. Stat.

Sin., 21, 5–42.

Visscher,P.M. et al. (2017) 10 Years of GWAS discovery: biology, function,

and translation. Am. J. Hum. Genet., 101, 5–22.

Wall,J.D. and Pritchard,J.K. (2003) Haplotype blocks and linkage disequili-

brium in the human genome. Nat. Rev. Genet., 4, 587–597.

Wang,H. and Leng,C. (2007) Unified LASSO estimation by least squares

approximation. J. Am. Stat. Assoc., 102, 1039–1048.

Warren,H.R. et al. (2017) Genome-wide association analysis identifies novel

blood pressure loci and offers biological insights into cardiovascular risk.

Nat. Genet., 49, 403–415.

Weissbrod,O. et al. (2016) Multikernel: linear mixed models for complex phe-

notype prediction. Genome Res., 26, 969–979.

Wen,X. et al. (2015) Cross-population joint analysis of eQTLs: fine mapping

and functional annotation. PLoS Genet., 11, e1005176.

Wen,X. et al. (2016) Efficient integrative multi-SNP association analysis via

deterministic approximation of posteriors. Am. J. Hum. Genet., 98,

1114–1129.

Willer,C.J. et al. (2008) Newly identified loci that influence lipid concentra-

tions and risk of coronary artery disease. Nat. Genet., 40, 161–169.

Zeng,P. et al. (2014) Variable selection approach for zero-inflated count data

via adaptive lasso. J. Appl. Stat., 41, 879–894.

Zhernakova,A. et al. (2009) Detecting shared pathogenesis from the shared

genetics of immune-related diseases. Nat. Rev. Genet., 10, 43–55.

Zhou,X. et al. (2013) Polygenic modeling with Bayesian sparse linear mixed

models. PLoS Genet., 9, e1003264.

Zhou,X. and Stephens,M. (2014) Efficient multivariate linear mixed model

algorithms for genome-wide association studies. Nat. Methods, 11,

407–409.

Zhu,X. et al. (2015) Meta-analysis of correlated traits via summary statistics

from GWASs with an application in hypertension. Am. J. Hum. Genet., 96,

21–36.

Zou,H. (2006) The adaptive Lasso and its oracle properties. J. Am. Stat.

Assoc., 101, 1418–1429.

Zou,H. and Hastie,T. (2005) Regularization and variable selection via the

Elastic Net. J. R. Stat. Soc. Ser. B, 67, 301–320.

iMAP for integrative pleiotropic mapping 2807

Downloaded from https://academic.oup.com/bioinformatics/article-abstract/34/16/2797/4960046
by Univ. of Michigan Law Library user
on 29 August 2018


	bty204-TF1

