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Figure S1. Simulations using normally distributed genotypes validate E(V(q)) = O(2/(n%p)) and

E(V(8)) = 0(4/(m*p?)).
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Figure S2. Simulations using real genotypes from either the Australia or the Finland data validate
V(g) = O(2/(n?p")) and V(S) = O(4/(m?p'?)), where p’ is the effective number of independent SNPs.
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Figure S3. Effective number of independent SNPs, p’, increases with the number of SNPs, p, in both
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(b) Finland

the Australia and the Finland data. The effect number p’ is computed based on either
V(g) = O(2/(n?p")) or V(S) = O(4/(m?p'?)). Note that both x-axis and y-axis are on log-scale.
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Figure S4. LD decay in the two data sets.
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Figure S5. Variance component estimates from MQS-HEW versus that from the HE regression in
three simulations based on either the Australia data or Finland data. Note that large h? accompanies
large estimation noise.
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Figure S6. Comparison of variance component estimates from REML (brown), HE (grey), LDSC
(purple), MQS-HEW (blue), and MQS-LDW (green) for scenario I of the k = 6 simulations based on
the Australian data (a, b) or the Finland data (c, d). LDSC estimates are obtained using either the
default 1 MB window (red) or an extended 10 MB window (purple). (a) and (c) show boxplots. The
true variance components are shown as blue horizontal lines. (b) and (d) show the mean squared error
(MSE) relative to REML. MSE relative to REML measures the statistical efficiency of REML with
respect to other methods; a higher relative MSE thus indicates low statistical efficiency. x-axis shows
the six variance components and the total genetic variance.
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Figure S7. Comparison of variance component estimates from REML (brown), HE (grey), LDSC

(purple), MQS-HEW (blue), and MQS-LDW (green) for scenario II of the k = 6 simulations based on

the Australian data (a, b) or the Finland data (c, d). LDSC estimates are obtained using either the
default 1 MB window (red) or an extended 10 MB window (purple). (a) and (c) show boxplots. The

true variance components are shown as blue horizontal lines. (b) and (d) show the mean squared error

(MSE) relative to REML. MSE relative to REML measures the statistical efficiency of REML with
respect to other methods; a higher relative MSE thus indicates low statistical efficiency. x-axis shows
the six variance components and the total genetic variance. y-axis in (d) is on log scale.
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Figure S8. Comparison of variance component estimates from REML (brown), HE (grey), LDSC
(purple), MQS-HEW (blue), and MQS-LDW (green) for scenario III of the k = 6 simulations based on
the Australian data (a, b) or the Finland data (c, d). LDSC estimates are obtained using either the
default 1 MB window (red) or an extended 10 MB window (purple). (a) and (c) show boxplots. The
true variance components are shown as blue horizontal lines. (b) and (d) show the mean squared error
(MSE) relative to REML. MSE relative to REML measures the statistical efficiency of REML with
respect to other methods; a higher relative MSE thus indicates low statistical efficiency. x-axis shows
the six variance components and the total genetic variance. y-axis in (d) is on log scale.
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Figure S9. Comparison of variance component estimates from REML (brown), HE (grey), LDSC
(purple), MQS-HEW (blue), and MQS-LDW (green) for the ascertained case control simulations with
independent SNPs. LDSC estimates are obtained using a genome-wide window; thus LDSC is identical
to MQS-LDW in this simulation. (a) and (c) show boxplots in the non-sparse scenario (with 10,000
SNPs total, all of which are causal) and the sparse scenario (with 100,000 SNPs total among which
10,000 are causal), where the methods are plotted in the same order as that in the legend. The true
variance components (0, 0.25 and 0.5) are shown as blue horizontal lines. (b) shows the mean squared
error (MSE) relative to REML. MSE relative to REML measures the statistical efficiency of REML
with respect to other methods; a higher relative MSE thus indicates low statistical efficiency. x-axis
shows the true variance components. y-axis is either on asinh scale (a) or log scale (b).



10

. o ]
m REML
o HE . -
© | m LDSC, 10MB .
- B MQS-HEW, m=400 °
o B MQS-LDW, m=400
L < 4
g -
. .
2 | O o 2 . 2
u e o | ° s o
= s . ° ST 2 -8
2 T T T ro - L
g : ; : R | | ; = ™7 -
© - ; ; ; ; ! ; : : = -
- - H H | H : i | ; ; © - e
§° L e - T e -
(&) . i : o -
- " - w -
B = 5
= : f T i B >
S P - P ~
c O ; : ; ; - L IR
> 4
o |
o : L e ) °
: : \
100 1,000 100 1,000
(a) Estimates (b) MSE

Figure S10. Comparison of variance component estimates from REML (brown), HE (grey), LDSC
(purple), MQS-HEW (blue), and MQS-LDW (green) for the sparse simulations based on the Finland
data. LDSC estimates are obtained using an extended 10 MB window. (a) shows boxplots, where the
methods are plotted in the same order as that in the legend. The true variance component (0.5) is
shown as a blue horizontal line. (b) shows the mean squared error (MSE) relative to REML. MSE
relative to REML measures the statistical efficiency of REML with respect to other methods; a higher
relative MSE thus indicates low statistical efficiency. x-axis shows the number of causal SNPs.
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Figure S11. Comparison of variance component estimates from REML (brown), HE (grey), LDSC
(red and purple), MQS-HEW (blue), and MQS-LDW (green) for k£ = 1 simulations based on the
Framinghan heart study (FHS) data. LDSC estimates are obtained using either the default 1 MB
window (red) or an extended 10 MB window (purple). Left panel shows the boxplot. The true variance
components (0, 0.25 and 0.5) are shown as blue horizontal lines. Right panel shows the mean squared
error (MSE) relative to REML. MSE relative to REML measures the statistical efficiency of REML
with respect to other methods; a higher relative MSE thus indicates low statistical efficiency. Note that
MQS-HEW and MQS-LDW yield almost identical results and thus blue and green curves overlap.
x-axis shows the true variance components. y-axis in the right panel is on log scale.
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Supplementary Tables

Table S1. Comparison between S computed based on different values of m and S computed based on
n. S is the sample mean of S across simulation replicates. We either simulate genotypes from a
binomial distriution (simulated X; n = 1,000 and p = 10,000), or use genotypes from the Australia
data (n = 3,925, p = 319, 148) or the Finland data (n = 5,123, p = 319, 148). Both S and S are scaled
by the number of SNPs p. Because SNPs are not independent in real data, S may over-estimates S for
very small m in both real data sets. However, the bias quickly diminishes for moderate m.

g m
p 10 20 30 40 50 60 70 80 90 100 "

Simulated  0.980 0.989 0.990 0.993 0995 0.995 0996 0.996 0.997 0997 0.999

Australia  18.77 14.37 1296 12.30 11.87 11.60 11.39 11.24 11.14 11.04 10.24

Finland  17.94 14.69 13.59 13.01 12.67 12.48 12.35 12.21 12.15 12.07 11.47

Table S2. Type I error control for different methods at different a levels in simulations with three
different genotype data sets.

Methods
Genotype Data «a REML HE LDSC, 10 MB MQS-HEW MQS-LDW
asymptotic jacknife asymptotic jacknife

0.10 0.127 0.119 0.139 0.117 0.125 0.118 0.126

Australia 0.05 0.068 0.059 0.077 0.063 0.065 0.063 0.066
0.01 0.029 0.011 0.021 0.012 0.014 0.013 0.012

0.10 0.124 0.102 0.121 0.103 0.161 0.101 0.162

Finland 0.05 0.070 0.045 0.064 0.043 0.094 0.044 0.093
0.01  0.026  0.008 0.018 0.008 0.021 0.008 0.022

0.10  0.107  0.084 0.105 0.079 0.469 0.079 0.467

FHS 0.05  0.060  0.050 0.063 0.039 0.382 0.039 0.383

0.01 0.022 0.012 0.011 0.007 0.240 0.007 0.243
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Table S3. SNP heritability estimates from different methods for 11 quantitative traits and 7 binary
phenotypes from three GWASs, after adjusting for the top 2 PCs. Values in parentheses are standard
errors. For MQS-HEW and MQS-LDW, the standard errors are computed by the asymptotic form. The
heritability estimates for the WTCCC data is presented at the observed scale. A small scaling factor is
required to transform the estimates to liability scale. To ensure unbiasedness, we do not constrain
variance components to be positive during estimation. Thus a low heritable trait may have its SNP
heritability estimated to be below zero. Ag¢ is the genomic control factor while icpt is the intercept
estimate from LDSC.

Methods
Trait REML HE LDSC, 10 MB  MQS (m = 400; asymptotic)  icpt Ace
HEW LDW

Australia, n = 3,925, p = 4, 352,968
Height 0.27 (0.072) 0.25 (0.071) 0.21 (0.089) 0.27 (0.071) 0.28 (0.071)  1.008 1.025
Finland, n = 5,123, p = 319, 148
BMI 0.20 (0.052) 0.17 (0.048) 0.17 (0.10) 0.17 (0.049) 0.18 (0.049) 1.007 1.022
CRP 0.037 (0.051)  0.026 (0.043)  0.085 (0.091)  0.030 (0.045) 0.030 (0.045) 0.993 0.994
DiaBP  0.066 (0.048) 0.064 (0.048)  0.036 (0.072)  0.069 (0.050) 0.070 (0.050) 1.007 1.010
Glucose  0.16 (0.050) 0.16 (0.052) 0.14 (0.087) 0.17 (0.054) 0.16 (0.052)  1.008 1.027
HDL 0.34 (0.052) 0.34 (0.062) 0.51 (0.12) 0.33 (0.061) 0.31 (0.055) 0.982 1.046
Insulin ~ -0.098 (0.045) -0.11 (0.042) -0.043 (0.083) -0.11 (0.043) -0.11 (0.043) 0.987 0.984

LDL  0.35(0.052)  0.41(0.078)  0.16 (0.10)  0.42 (0.080)  0.42 (0.079) 1.051 1.078
SysBP  0.17 (0.051)  0.16 (0.052)  0.11 (0.090)  0.17 (0.053)  0.17 (0.053) 1.015 1.034
TC 0.26 (0.051)  0.29 (0.065)  0.12 (0.11)  0.30 (0.067)  0.30 (0.066) 1.036 1.052
TG 0.18 (0.052)  0.15 (0.047)  0.13 (0.11)  0.15 (0.048)  0.15 (0.048)  1.008 1.026

WTCCC, n =~ 5,000, p = 458, 868

BD 0.83 (0.057)  1.04 (0.094)  0.43 (0.11) 1.07 (0.097)  1.15(0.10)  1.080 1.114
CAD 057 (0.061) 057 (0.070)  0.18 (0.11)  0.59 (0.071)  0.60 (0.071)  1.050 1.071
CD 0.68 (0.061)  0.76 (0.082)  0.44 (0.14)  0.77 (0.084)  0.79 (0.081) 1.043 1.078
HT 0.58 (0.060)  0.61 (0.070)  0.12 (0.097)  0.62 (0.071)  0.66 (0.072) 1.061 1.066
RA 0.68 (0.059)  0.80 (0.081)  0.50 (0.33)  0.82 (0.083)  0.81 (0.082) 1.039 1.044
TID 097 (0.053)  1.19 (0.091)  0.91 (0.57) 1.22 (0.092)  1.19 (0.088) 1.035 1.053
T2D 0.0 (0.061)  0.64 (0.075)  0.15(0.10)  0.66 (0.077)  0.70 (0.078) 1.061 1.073
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Table S4. SNP heritability estimates from different methods for 11 quantitative traits and 7 binary
phenotypes from three GWASs, after adjusting for the top 10 PCs. Values in parentheses are standard
errors. For MQS-HEW and MQS-LDW, the standard errors are computed by the asymptotic form. The
heritability estimates for the WTCCC data is presented at the observed scale. A small scaling factor is
required to transform the estimates to liability scale. To ensure unbiasedness, we do not constrain
variance components to be positive during estimation. Thus a low heritable trait may have its SNP
heritability estimated to be below zero. Ag¢ is the genomic control factor while icpt is the intercept
estimate from LDSC.

Methods
Trait REML HE LDSC, 10 MB  MQS (m = 400; asymptotic)  icpt Aao
HEW LDW

Australia, n = 3,925, p = 4, 352,968
Height 0.25 (0.073) 0.21 (0.066) 0.16 (0.090) 0.22 (0.067) 0.24 (0.068) 1.009 1.015
Finland, n = 5,123, p = 319, 148
BMI 0.19 (0.052) 0.14 (0.045) 0.10 (0.12) 0.15 (0.046)  0.16 ( 0.046) 1.012 1.013
CRP 0.019 (0.051) 0.012 (0.042)  0.060 (0.094)  0.014 (0.044) 0.015 (0.044) 0.994 0.993
DiaBP  0.034 (0.049) 0.028 (0.044) -0.019 (0.074) 0.031 (0.046) 0.032 (0.046) 1.008 1.004

Glucose  0.13 (0.052)  0.097 (0.044)  0.041 (0.079)  0.10 (0.046)  0.11 (0.046) 1.012 1.018
HDL  0.30 (0.053)  0.23 (0.047)  0.42 (0.11)  0.23 (0.046)  0.23 (0.046)  0.982 1.035
Insulin  -0.16 (0.046)  -0.13 (0.041)  -0.067 (0.076) -0.13 (0.042) -0.13 (0.042) 0.987 0.979
LDL  0.29 (0.053)  0.22 (0.046)  0.0049 (0.10)  0.23 (0.047)  0.24 (0.048) 1.041 1.044
SysBP  0.13 (0.052)  0.098 (0.044)  0.042 (0.096)  0.10 (0.045)  0.11 (0.045) 1.013 1.016
TC 0.23 (0.052)  0.18 (0.047)  0.046 (0.11)  0.19 (0.048)  0.20 (0.049) 1.028 1.036
TG 0.16 (0.052)  0.13 (0.045)  0.091 (0.094)  0.13 (0.046)  0.13 (0.046) 1.010 1.021

WTCCC, n =~ 5,000, p = 458, 868

BD 0.78 (0.059)  0.83 (0.077)  0.36 (0.12)  0.85 (0.078)  0.91 (0.081) 1.062 1.088
CAD 054 (0.062) 0.51 (0.066)  0.13 (0.11)  0.52 (0.067)  0.54 (0.067) 1.048 1.058
CD 0.65 (0.062)  0.66 (0.072)  0.37 (0.13)  0.68 (0.075)  0.70 (0.075) 1.041 1.065
HT 0.57 (0.060)  0.59 (0.069)  0.090 (0.095)  0.61 (0.071)  0.64 (0.071) 1.062 1.062
RA 0.66 (0.060)  0.73 (0.076)  0.49 (0.32)  0.76 (0.077)  0.75 (0.077) 1.032 1.036
TID 097 (0.053)  1.15(0.087)  0.90 (0.57) 1.21 (0.090)  1.15 (0.086)  1.034 1.044
T2D 055 (0.062) 0.52 (0.066)  0.12 (0.10)  0.53 (0.068)  0.55 (0.068) 1.049 1.058
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Table S5. SNP heritability or heritability estimates from MQS-HEW and MQS-LDW for 15
quantitative traits and 7 binary phenotypes from four data sets. FHS is a family study while the rest
are population studies. Values in parentheses are standard errors. Different from the figure in the main
text, the standard error are computed based on block-wise jackknife. S is estimated using either a
random subset of 400 individuals from the data (first two columns) or 503 individuals of European
ancestry from the 1,000 Genomes Project (1IKGP, last two columns).

Trait MQS (m = 400, jackknife)

MQS (m = 503, 1IKGP, jackknife)

HEW LDW HEW LDW

Australia, n = 3,925, p = 4,352,968
Height 0.27(0.072) 0.28(0.073) 0.25(0.064) 0.27(0.065)
Finland, n = 5,123, p = 319,148

BMI 0.19(0.042) 0.19(0.043) 0.33(0.079) 0.35(0.080)

CRP 0.037(0.046)  0.037(0.046)  0.059(0.080) 0.060(0.080)
DiaBP  0.075(0.042)  0.076(0.042)  0.13(0.073) 0.13(0.074)
Glucose  0.21(0.050) 0.21(0.048) 0.36(0.088) 0.37(0.087)

HDL 0.36(0.066) 0.35(0.059) 0.63(0.11) 0.61(0.10)
Insulin  -0.082(0.039) -0.081(0.039) -0.15(0.068) -0.15(0.068)

LDL 0.61(0.058) 0.61(0.057) 1.04(0.10) 1.10(0.10)
SysBP 0.27(0.042) 0.28(0.043) 0.47(0.073) 0.50(0.076)

TC 0.42(0.055) 0.43(0.054) 0.73(0.094) 0.76(0.096)

TG 0.18(0.052) 0.17(0.050) 0.30(0.085) 0.30(0.085)

WTCCC, n =~ 5,000, p = 458, 868

BD 1.08(0.068)  1.16(0.071)  1.02(0.068) 1.09(0.071)
CAD  0.60(0.065)  0.63(0.066)  0.57(0.064) 0.60(0.065)
CD 1.08(0.097)  1.12(0.090)  1.03(0.092) 1.08(0.088)
HT 0.63(0.064)  0.66(0.064)  0.59(0.060) 0.62(0.061)
RA 0.84(0.29) 0.83(0.25)  0.78(0.36) 0.80(0.33)

T1D 1.60(0.73) 1.41(0.59)  1.48(0.96) 1.38(0.84)

T2D  0.71(0.071)  0.76(0.070)  0.66(0.069) 0.69(0.069)

FHS, n = 3,806 — 6,855, p = 372, 131

HDL 0.0 (0.071)  0.40 (0.073)  2.38 (0.072) 2.71 (0.084)
LDL 058 (0.10)  0.58 (0.10)  2.91 (0.086) 3.32 (0.099)
TC 054 (0.091)  0.55(0.092)  2.79 (0.10) 3.04 (0.11)
TG 047 (0.074)  0.47 (0.075)  2.46 (0.099) 2.67 (0.10)
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Supplementary Text
1 The Model

Although our method can be reasonably general, we introduce it by considering a particular application:
partitioning heritability by different SNP functional categories. To do so, we assume that SNPs have
been pre-classified into k different, non-overlapping functional categories. Our goal is to estimate the
proportion of phenotypic variance explained (PVE) by all SNPs in each category. To do so, we consider
the following model

k
y=> XiB;+€ e~MVN(0,07, M), (1)
i=1
where y is an n-vector of phenotypes for n individuals; X; is an n by p; genotype matrix for p; variants
in ith category; B, is a p;-vector of corresponding effect sizes; € is a n-vector of residual errors; U,% 418
the residual error variance; M = I — 1,12 /n is the projection matrix onto the null space of the intercept;
and MVN denotes a multivariate normal distribution. Both y and every column of X have been centered
to have mean zero. Because of the centering, the residual errors follow a degenerate multivariate normal
distribution with a low-rank covariance matrix M that constrains the errors to sum to zero. Centering
does not affect results but simplifies the algebra. Extension of the model to incorporate other covariates
in addition to the intercept is provided later in section 7.
Following previous approaches [1, 2], for each effect size vector 3;, we specify a normal prior with
mean zero and variance o2 /p;, or B; ~ MVN(0, 02 /p;I). This normality assumption of effect size leads
to an alternative but equivalent form — a LMM with k variance components [2]

k
y = Z i + €, gi ~ MVN(07 U’?Ki)v €~ MVN(Oa UI%+1M)7 (2)
i=1

where g; = X;(3; is the combined genetic effects of ith category; K; = X;XI /p; is an n by n genetic
relatedness matrix computed from SNPs in ith category; o2 = (0%, -+ ,0}) are the variance components.

As usual [1,3,4], we standardize every column of X to have variance one. Unlike centering, stan-
dardizing the X columns will affect the results because it changes our prior assumption [2]. Specifically,
standardizing the X columns corresponds to making an assumption that rarer variants tend to have larger
effects than common variants, and that marker effect sizes depend on the minor allele frequencies (MAFs)
in a particular mathematical form (see [2] for relevant discussion). We do not, however, standardize y,
and the phenotype variance is 512; =yTy/(n—1).

At this point, it is useful to define the scaled version of the variance components: h? = (h?,--- | h}) =
(g%/sz, - ,op/sy) = 0%/st and hi = o}, /s5. As we will show below, when the phenotype variance

s2 is unknown, o and o}, are not estimable from summary statistics alone, but h? and h{,, are.

With these modeling assumptions, PVE by ith category is PVE; = 02/ (Ef;l of)=h;/ (Ef;l h3), i€

2 MoM and MINQUE

Our goal is to estimate the variance components o and the residual error variance o2 41, Or correspond-
ingly the scaled version h? and h? +1- The estimated parameters can then be used to compute PVE.
To estimate the variance components, we consider the method of moments (MoM). Because variance
components are parameters that define the second moments of LMMs, MoM for variance component
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estimate is naturally based on a set of second moment matching equations (e.g. [5])

k
E(yTAjy) = Z tr(AK;)o? +tr(A))ot, 1, (3)

i=1

where each A; is an arbitrary symmetric non-negative definite matrix used to create weighted second
moments; tr denotes matrix trace. For estimation with MoM, we replace the expectation on the left hand
side (LHS) of equation 3 with the realized value yTAjy. We then solve the equations to obtain estimates
for o2 and o} +1- Because there are k + 1 parameters in our model, we only need k + 1 different A; to
obtain the estimates. Though unnecessarily (e.g. the MINQUE estimates described below are based on
only k+1 different A;), we can also use more than k+1 A, to set up an over-determined linear system,
and use the ordinary least squares (OLS) to obtain unbiased estimates. For example, the naive LDSC
equation [6] is based on using a set of p different A;, where A; = XA]-XT and A; is a rank one matrix
with jjth diagonal element being one and all other elements being zero. (Note that we call this naive
LDSC to distinguish it from LDSC. LDSC does not use OLS estimates based on the naive LDSC equation
because of low statistical efficiency. Rather, LDSC introduces two extra weights to improve statistical
efficiency.)

Any choice of A; will yield unbiased estimates for o2 and o7 41, but different choices of A can affect
statistical efficiency of the estimates. One particular choice of A; can be found based on the Minimal
Norm Quadratic Unbiased Estimation (MINQUE) criterion [5,7-9]. To see how MINQUE works, it helps
to view the right hand side (RHS) of the equation 3 as a linear combination of the variance components,
and view the realization of the LHS, y A ;y, as a way to provide a good estimate of this linear combination.
We can quantify the accuracy of using yA;y to estimate the RHS by the expected squared error, or

k

SE(0%,0741) = E((y"Ayy = ) tr(A;Ki)o7f — tr(A;)0741)%), (4)
=1

where the expectation is with respect to distribution of y and SE is a function of the variance components.
Our goal is then to find a set of A; that minimizes the SE given 6,07 | conditional on tr(A;K;) being
a constant. It has been shown [10] that this particular choice of A; is of the following form

A =H'K;H !, (5)

where j =1,--- ,k+1, Kyy; =M and H = Zf:ll 0?K;. Note that we have loosely used the matrix
inverse notation to denote a generalized inverse, and we have also loosely used hat on top of A; to not
denote an estimate but to denote an optimal choice under the MINQUE criterion.

This set of Aj is also known as the best quadratic unbiased estimator (BQUE) for the variance
components, where “best” is in the sense that the estimates minimize the expected squared error given
the parameters [10]. The BQUE for the variance components is analogous to the best unbiased estimator
(BLUE) of fixed effects. BQUE is equivalent to the minimal variance quadratic unbiased estimation
(MIVQUE) criteria [8,9], and is a special case of the minimum-norm quadratic unbiased estimators
(MINQUE) [5,7-9] that have been used in the animal breeding programs [11]. Because of the equivalence
and the commonality of MINQUE, we refer to A; in the form of equation 5 as the optimal choice based
on the MINQUE criterion and the resulting variance component estimating equations of equation 3 as
the MINQUE equations.

This optimal Aj depends on the variance components o2, o7 41 that are unknown a priori and are the
target of estimation. Thus, we cannot use the optimal Aj directly. However, two options are available
to obtain MINQUE estimates in practice. The first option is to apply an iterative procedure on equation
3: in each iteration ¢t we plug in the current estimates o“?, &Iz-s-l,t in H and A; to obtained the updated



18

estimates &7 1:0h41.441- The resulting algorithm is often referred to as an iterative MINQUE, or I-
MINQUE, which produces estimates that are identical to REML estimates [12]; thus I MINQUE can be
viewed as an algorithm to obtain REML estimates. The second option is to use a pre-determined set
of parameters 6'?7&,3+1 to construct H = Zf*f 52K, and then use A = H 'K; H~'. For example,
MINQUE(0) sets h®* = 0, h7,;, = 1 to obtain estimates of reasonable statlstlcal efficiency [13, 14].
However, both these two options require individual-level data.

3 First Approximation: SNP Weights and Approximation to
MINQUE

We aim to develop an approximation form of the optimal A]‘ that eventually allows the use of summary
statistics, while retaining the statistical efficiency comes with the optimal Aj. Summary statistics often
comes in the form of marginal z-scores. For [th SNP, the marginal z-score is z; = x}y/(#7'/n — 1),
where x; is an n vector of genotypes for the SNP and 77! is the estimated residual error variance of the
marginal linear model. Because individual SNP effect size is small for most complex traits, 77! ~ 55
and z ~ x!y/ (55\/71 — 1). Therefore, summary statistics z-scores are accurately approximated by the
cross-product of X and y. To use summary statistics, we choose the following A ; matrix with X flanking

the two sides to form X”y in equation 3:
A =XW;XT/p; (j=1,-- k), Apa=M (6)

where W, = diag(wj1,- - wjp]) is a pre-specified p; by p; diagonal matrix of SNP weights and is used
to ensure A approximates A well to retain the statistical efficiency comes with AJ, and X; again is an
n by p; genotype matrix for p; variants in ith category A (j # k+1) is effectively a weighted genetic
relatedness matrix, while Ak+1 approxunates Ak+1 by assuming that H is approximately M. Note that
A}, ensures that Zf+11 o7 = s and Zk+1 h? = 1. Because a scale transformation of W, does not
affect results, to simplify the algebra we constrain tr(W;) = p;, or equivalently, assume that the average
SNP weight equals one.
With this set of Aj, the £ + 1 estimating equations from equation 3 become

k

Yy Ay =) tr(KiA )0} +tr(Aj)oq ., (7)
i=1

yly = Ztr )oi +tr(M)oj, . (8)

where tr(K;) = tr(M) = tr(A;) = n — 1. We refer to the above equations as MQS estimating equations.
We are yet to specify the weighting matrices W;. In the present study, we consider two particular
choices. The two choices represent different ways of approximating the optimal Aj and are related to the
HE regression [15-21] and the LDSC [6,22,23], respectively.
Both weights are derived based on approximations to ensure Aj ~ Aj and thus the statistical efficiency
of the estimates (approximation details are provided in section 8). Both approximations become exact
for unrelated individuals or a trait with zero heritability.

3.1 HE Weights
The first set, which we refer to as the HE weights, assigns equal weights for all SNPs, or

Wi = 1. (9)
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We refer to the variation of MQS under the HE weights as MQS-HEW. Surprisingly, MQS-HEW is
equivalent to both MINQUE(0) [13,14] and the HE regression (section 8). Because of the equivalence
between MQS-HEW and HE, MQS-HEW is expected to provide unbiased estimates for case control
studies as shown before [24]. Compared with HE and MINQUE(0), however, our MQS formulation

allows the use of summary statistics to compute both the point estimates and the standard errors (see
below).

3.2 LD Weights

The second set, which we refer to as the LD weights, takes the following form

wj = (Z(n — 1)/pil(jlwi)7l? +1)7%/c;, (10)

(3

where ﬁf is a pre-specified estimate of h?; l(ji~iy is the LD score of SNP jl with respect to all SNPs
(including itself if j = 4) in ith category; and ¢; is a normalizing constant of jth category to ensure that
> wji = pj. In practice, we use the variance component estimates from MQS-HEW as Bf, but restricted
them to be between 0 and 1 for algorithm stability. The LD score here is defined to be the summation
of squared correlations between the jlth SNP and all SNPs in the ith category minus the expectation
under the null, or Ijisy = Y0 (7%, — 1/(n = 1)).

We refer to the variation of MQS under the LD weights as MQS-LDW. When k£ = 1 and when
the LD scores are exact (i.e. computed based on its definition using all SNPs genome-wide), MQS-
LDW is mathematically equivalent to LDSC without the intercept [6] (section 8). Due to computational
reasons, however, LD scores cannot be computed exactly and can only be estimated using neighboring
SNPs instead of all SNPs via a sliding window based approach [6]. Therefore, LD scores are always under-
estimated in practice. Under-estimation of the LD scores have different impacts on MQS-LDW and LDSC.
For MQS-LDW, because LD scores are only used to improve statistical efficiency of the estimates, the
MQS-LDW estimates obtained using the estimated LD scores are still unbiased but are less statistically
efficient than that based on exact LD scores. In contrast, LDSC uses LD scores to both increase statistical
efficiency and to approximate tr(KiAj) and account for SNP correlations. Approximating tr(KiAj) with
under-estimated LD scores will result in underestimation of SNP correlations and thus over-estimation
of the variance components, which we have shown in the main text.

When k£ > 1, MQS-LDW is no longer equivalent to the stratified LDSC [23] even with exact LD
scores. Unlike £ = 1, it is no longer possible to convert MQS-LDW estimating equations to a set of linear
equations that relate per-SNP z-scores to per-SNP LD scores as in the stratified LDSC.

4 Point Estimates and Confidence Intervals

With the MQS estimating equations 7 and 8, it is straightforward to obtain variance component estimates.
To do so, we subtract equation 8 from each equation in 7, solve the resulting k equations to estimate
o?, and plug in the estimated o2 to equation 8 to estimate 01%—5-1' The resulting MQS estimates are in a
simple, closed-form solution

6" =8"q, (11)

k
&lgﬂzsz_z&izv (12)

=1
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where the elements in the k-vector q and the k by k& matrix S are

ai =y (A — tr(A;)/tr(M)y/(n —1)* = y" (A; = T)y/(n — 1), (13)
Sij = (tr(A;K;) — tr(A;)tr(Ky) /tr(M))/(n — 1)* = tr(A;K;)/(n — 1)* = 1/(n — 1). (14)

The variance for the estimates are

V(6?) =S7'V(q)S7, (15)
V(6i1) = 1,87V (q)S 1, (16)

where 1, is a k-vector of 1s and the k by k covariance matrix V(q) is
V(@) = V(y" (A —Dy,y" (A; —L)y) = 2tr(H(A; — DH(A; —1))/(n — 1)*, (17)

since V(y) = H.
The above form of V(q) requires cubic operations to compute. To speed up computation, we instead
consider a novel approximation to V(q)

V(a)y ~2y" (A; —DH(A; —T)y/(n — 1)*, (18)

which is the asymptotic form we use in the main text. The above approximation is based on replacing the
expectation H = E(yy”) with its realized value yy?. The approximation is motivated by the average
information (AI) algorithm [25] and effectively uses a realized information matrix in place of the expected
information matrix. Our approximation not only makes computation n times faster than the usual MoM,
but also allows the use of summary statistics in computing standard errors (section 6). As we have shown
in the main text, the standard errors constructed based on this approximation can be used to form a
normal test for testing Hy : 02 = 0 at the usual significance levels. However, when the sample size is
small or when we want to obtain calibrated test statistics at higher significance levels (e.g. at a levels
below 0.01), then we will need to use a mixture of chi-square distributions to obtain more calibrated
p-values, as has been done in [26]. We do not explore this issue further here.

5 Second Approximation: Estimating S via Subsampling

Up to now, the total computational complexity of MQS scales quadratically with respect to the sample
size and linearly with respect to the number of SNPs, or equivalently, on the order of O(pn?). Specifically,
it takes O(pn) time to compute q, O(pn?) time to compute S, and O(n?) time to compute V(q). Because
the most computationally expensive part is the computation of S, we consider estimating S instead of
computing it. Specifically, we consider using m randomly selected individuals from the full sample to
estimate S, or

Sij = (tr(AJK]) — tr(A})tr(K) /tr(M)) /(m = 1)*, A} = X[WXT /p;, Ki =X X{T/pi.  (19)

where X/ is the standardized genotype matrix for the subset of individuals and M’ =1—1,,1,,/m is the
projecting matrix onto the null space of the intercept for this subset of individuals.

Using the estimated S in place of S reduces computational complexity from O(pn?) to O(pm?),
resulting in an overall computational complexity of O(pn +pm?) for MQS. In addition, using S allows us
to apply MQS to data from many consortium studies: we can pair q computed from the complete data
with S estimated from a random subsample of the study. When such a random subsample of the study
is not available, we can also use a reference panel, such as the 1,000 genomes project [27], to estimate S,
so long as individuals in the reference panel can be viewed as a subsample of the study (e.g. of the same
ethnic origin).
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To account for the extra variance introduced by using S instead of S, we adjust the variance for the
estimates by the Delta method

V(6?)=S"!(V(q) +D(6*)V(S)D(6%))S ™", (20)
V(6741) = 1787} (V(q) + D(6*)V(S)D(6%))S "1, (21)

where D(6?) denotes a k by k diagonal matrix with ith diagonal element 62. We compute V(S) via
Jackknife [28]. Specifically, we first compute K, A’ and S. Then, we remove one individual at a time
and use the corresponding submatrix K/ _, and Am 1 to compute Sm_l. Finally, we estimate the
element-wise variance of S as V(S) Because the second step of computing Sm,l re-uses many quantities
that are available from computing S, the overall complexity of estimating V(g) is only O(m?).

Our reasoning behind estimating S stems from the following alternative representation of the MQS
solution

1 & 9 53
_ 1 2 Sy 22
i ;wllml,y n—_1’ ( )
Pi  Pj
1
Si=—— > > wark e - —, (23)
Pibj =5

where 75, = X;*-Fly/(n — 1) is the correlation between phenotype and the genotype of {th SNP in ith
category, and 7 ;v = x5x;/(n — 1) is the genotype correlation between [th SNP in ith category and
I'th SNP in jth category. Intuitively, each element of S is a weighted average of p;p; different terms of
72121 ;i while each element of q is a weighted average of only p; different terms of B?l Therefore, S is much
easier to be estimated accurately than q.

Besides the intuitive explanation, we also provide two formal arguments to support the subsampling
approach in MQS (details in section 10 with simulation details in section 11). We use MQS-HEW for
illustration. Our first argument is that the variance of S estimated by using m individuals, or V(S), is
often small compared with S itself. Because of this, the Delta method approximation will be accurate and
S~! can be estimated well by using S—1. Specifically, when k& = 1, for independent SNPs, S is expected

to be 1/p while y/V(S) is expected to be 2/(mp) under the null, where p is the number of SNPs.

Simulations with independently and binomially distributed SNPs confirm these relationship (Figure S1
and Table S1). For SNPs with LD, we can use the effective number of independent SNPs in place of

p to provide approximate forms E(S) ~ 1/p’ and \/E(V(S)) ~ 2/(mp'). Simulations with real data
confirm these approximate relationship, though the approximation can be less accurate with very small
m (Figures S2, S3 and Table S1).

Our second argument is that V(S) is also small compared with V(q). Because of this, the variance of
&2 and 6,% 41 is dominated by V(q) and estimating S does not introduce much extra variance. Specifically,

when k = 1, for independent SNPs, /E(V (¢)) = v2/(n./p) under the null (Supplementary Text), which

2pm/n times larger than \/V(S’ ). Simulations with independently and binomially distributed SNPs
confirm this relationship (Figure S1). For SNPs with LD We use the effective number of independent
SNPs in place of p to provide an approximate form /E(V ~v/2/(ny/p’). Simulations with real data
again confirm the approximate form (Figures S2, S3).

The two arguments above represent the first attempt to understand the behavior of subsampling
strategy and the reference panel idea that has been widely used in genetics [6,29-33]. However, we note
that the two arguments are by no means complete. For example, we have focused on k = 1 here. For
k > 1, the number of variance components k as well as the effective number of independent SNPs in each
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category will both play a role in determining the size of m. A larger m is likely required to ensure accurate
estimation of S~ as well as a small V(S) with respect to V(q). In addition, we have focused only on
MQS-HEW. MQS-LDW uses an iterative procedure that makes it harder for a thorough investigation.
However, we have provided simulations as well as real data applications in the main text to show that
estimating S does work well for either k =1 or & > 1 and for both MQS-HEW and MQS-LDW.

6 Estimation with Summary Statistics

We are now ready to describe the details of MQS estimation when we only have summary statistics.
In this case, we require marginal z-scores from the complete data and individual-level genotypes from a
subset of individuals (or from a separate reference panel whose individuals can be thought of as a subset
of the study sample). When we only have summary statistics and when the phenotype variance 52 is
unknown, o2 and 0,3 41 are not estimable but their scaled versions h? and hi 4 are.

To estimate h? and h% 41, we first use the marginal z-scores to approximate q

1 1 Pi R
qi/si ~ i > wa(zh - 1). (24)
t=1

The approximate assumes that the marginal variant effect size is small, which holds well for most GWASs.
Next, we use the individual-level genotype data from a subsample of data or a separate reference panel
to compute S (equation 19). With q/si and S, we estimate h? and hiH with equations 11 and 12.

To compute the variance for the estimates, we consider two alternative strategies. The first strategy
relies on the asymptotic form, is accurate but requires summary statistics in addition to the marginal z
scores. This strategy is based on an alternative expression of the equation 18

k
V(@)ij/sy ~ 2 hi(a] WX XXX W2/ (pipjpr) — 2 WiX] Xz / (pipr)
=1
— 2] X, X;W,z;/(p; r - 1)
z; XiX;W;z;/(pipi) + 2 z1/pi)/(n )
+ 20y (2] WiXT X W25 /pip; — 2] Wizi/pi — 2] Wjz;/p; +1)/(n = 1)°  (25)

where z; is a p; vector of marginal z-scores for SNPs in ith category. Thus, if we can compute additional
summary statistics — specifically the n by k matrix of X;z;, the n by k matrix of X;W,z;, and the
p by k matrix of XTX;W;z; — then we can compute the standard errors. These additional summary
statistics are easy to compute; in consortium studies, they can be computed within each substudy and
then combined across studies without sharing individual level data. Importantly, for MQS-HEW, we only
need to compute two of these three matrices, X;z; and X7 X;z;. These two matrices do not require W,
which is a function of variance components in MQS-LDW. Thus, MQS-HEW can be much more convenient
than MQS-LDW. Finally, we note that, although it is tempting to use quantities computed from a subset
of individuals to estimate the confidence interval, we find that z] W; X" X]X["X W z;/((m —1)?) from
m individuals is not a good estimate of z7 W, XTI X, XX ;W ,z;/((n — 1)?).

The second strategy relies on jackknife but does not require extra summary statistics. It is based
on the strategy used in LDSC [6]. It works well when SNPs are approximately block-wise indepen-
dent but can work poorly otherwise. This second strategy is based on the observation that the co-
variance function V(q) as a function of y can be written as a function of the marginal z-scores z =
(z1,,2zk)T. z; = XTy/(syv/n — 1) follows approximately a degenerate multivariate normal distribu-
tion z; ~ MVN(0, X7 HX;/(s2(n—1))) with a low rank covariance matrix. When SNPs are independent

(i.e. XTHX; is diagonal) or when X7 HX; is block-diagonal, we can use block-wise permutation of
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z-scores to estimate V(q) as in LDSC [6]. However, as we show in the main text, when LD pattern is
complicated, jackknife can yield untrustworthy confidence intervals.

Overall, we recommend the use of the asymptotic form. However, we recognize that the asymptotic
form requires additional summary statistics that may not be readily available from many studies at the
moment. Thus, we have also implemented jackknife in the software as a useful practical option.

7 Extensions of MQS

Although we have focused on the specific model outlined in equation 2, we note that it is straightforward
to generalize our model to incorporate other modeling assumptions.

We can generalize the model to incorporate other prior assumptions on the dependence of effect sizes
on the MAFs (and other variant information), as long as the dependency is linear in o7 (i.e. in the form
of g(fi1)o?/p;, where f, is the MAF for the [th variant in the ith category). Such generalization can
be achieved by replacing the usual genetic relatedness matrix K; with a corresponding weighted genetic
relatedness matrix with variant weights depending on g(f;).

We can generalize our model to incorporate overlapping categories. If [th variant belongs to k; different
categories, we can assume its effect size variance to be a weighted function of the variances of each category,
or Zfl: L02/(pik;). With this assumption, we can again generalize our model by replacing the genetic
relatedness matrix K; with a corresponding weighted genetic relatedness matrix with variance weights
1;ei/k;, where the indicator function 1;¢; equals one when the [th variant belongs to the ith category and
equals zero otherwise.

Finally, we can also generalize our model to incorporate other covariates such as genotype PCs.
Specifically, we can consider the following model

k
y=Wa+) gi+e g ~MVN0,07K;), e~MVN(0,07,,1), (26)

i=1

where, in addition to the previous notations, W is an n by ¢ matrix of covariates including the intercept,
and « is a c-vector of corresponding coefficients. To estimate variance components, we multiple on both
sides of the equation the projection matrix M = I — W(WTW)~'W7T_ This leads to

k
y* =) g +€, g ~MVN(0,0;MK;M), € ~MVN(0,07,,M), (27)
=1

where y* = My, gf = Mg and €* = Me are the transformed values. After the transformation, variance
component estimation can be proceeded as usual. Note that tr(M) = n — ¢ will replace n — 1 in all the
estimation solutions.

8 Relationship to Other Methods

MQS-HEW and the Haseman-Elston Regression

We first show that the HE weights are used to ensure AJ— ~ Aj. Specifically, when H ~ M (or more
precisely a scaled version of M), Aj with HE weights is approximately Aj, as Aj = Xij/pj =K; =
H 'K;H ' = A;. Clearly, the main approximation we used (H ~ M) is expected to be accurate either
when the trait has a low heritability (i.e. h*> = 0 and h7_, = 1) or when individuals are unrelated (i.e.
K; ~ M). Thus, we expect the MQS-HEW estimates to be accurate for a data with unrelated individuals
or a trait with low-heritability.
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We next show that MQS-HEW is mathematically equivalent to the HE cross-product regression. This
relationship is surprising because the HE regression is formulated as relating the phenotype correlation
to the genotype correlation. Specifically, the HE regression is based on

k
E(yiyr) = Z(Ki)ll’o—zz +o?2, (28)
i=1
for all pairs of Ith and !’th individuals, where (K;);» denotes ll’th element of matrix K;. Plug in the
realized value of the LHS leads to n? equations

k
vec(yy?) ~ Z vece(X; XT /pi)o? + vec(I)o?, (29)
i=1

where vec denotes matrix vectorization by stacking columns. Above, we loosely use ~ to denote a linear
regression. The estimates from the above model are identical to that from MQS-HEW with computed
S, because of standard algebra properties

vec! (X Xi)vee(X,;XT) = tr(X; X X;XT), (30)
vec! (X7 Xi)vee(yy”) =y XiX]y. (31)

8.1 MQS-LDW and the LD Score Regression

We first show that the LD weights are used to ensure Aj R Aj. To see this, let us denote 2 =
> UZ-QX]TXZ-XZTXJ»/((n - p;) + a,%_HI. First, when XjTXj/(n — 1) = I, we have XfXjﬂ R X;TFHXj.
Thus X;2 ~ HX}, or equivalently H™'X; ~ Xjﬂfl. Next, we approximate €2 with its diagonal ele-

1/2). With these two approximations, we have A; = X jdiag(w;i)/ (pjsy) X ~

ments, or Q & s7diag(w;,
H 'K;H ' = A;. The first approximation is accurate when SNPs are independent while the second
approximation is accurate either SNPs are independent or the trait has a low heritability. We thus expect
the MQS-LDW estimates to be accurate for a data with independent SNPs or a trait with low-heritability.
Moreover, the second approximation suggests that a non-diagonal form of W that uses a better approx-
imation of Q7! may provide more accurate estimates than the diagonal W. Finally, compared with
MQS-HEW, MQS-LDW uses LD information and relies on a prior set of h? from MQS-HEW. Thus,
MQS-LDW may be more accurate than MQS-HEW in certain situations. However, these two differences
also make it harder to investigate whether the MQS-LDW estimates are also unbiased for case control
studies.

We next show that, when k& = 1, MQS-LDW is mathematically equivalent to LDSC when the LD
scores are exact. This relationship is also surprising because the LDSC is formulated as p equations that
relate per-SNP z-scores to per-SNP LD scores. For k = 1, the LDSC is based on

5~ (n—1)/plih® + 1, (32)

where [; is the LD score for Ith SNP and we loosely use ~ again to denote a linear regression. We refer
to the equation above as the naive LDSC because the actual LDSC applies additional SNP weights and
uses the weighted least squares to obtain these estimates. In particular, LDSC uses SNP weights

wicl; ! = ((n—1)/phih® + 1) 72171 (33)

Because tr(KA) = (n — 1)2/p* S, wily + (n — 1)/p, yTXWXTy = (n — s> wizf, y'y = (n—
l)sf/ >, wi/p, the weighted least square estimates from LDSC are identical to that from MQS-LDW with
computed S. In practice, because LD scores cannot be computed exactly, tr(KA) > (n—1)2/p? > wil; +
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(n—1)/p and the estimates from LDSC are always over-estimated. MQS-LDW uses tr(KA) directly and
thus is an exact form of LDSC.

We note that there are two other minor differences between the LDSC introduced in [6] and our
formulation above. First, LDSC uses n instead of the correct n — 1 in the two equations. Second, the LD
scores defined in LDSC does not contain the correction term —1/(n — 1). The practice effects of these
difference are expected to be small.

When k > 1, there is no equivalence between MQS-LDW and the stratified LDSC [23]. Unlike k = 1,
it is no longer possible to convert MQS-LDW estimating equations into a set of linear equations that
relate per-SNP z-scores to per-SNP LD scores. Indeed, the stratified LDSC has to rely on an ad hoc
choice of SNP weights without clear justification.

9 Enrichment Score

Based on h, we can compute an enrichment score for each category, defined as
p=(p1,- - .p)" =(17"Dy1)(1"h)"'D;'h (34)
where D), is a diagonal matrix with ith diagonal element p;. By the Delta method, we have

p=(1"D,1)1"h)"'D,'h
g—ﬁ =(1"D,1)(1"h)"'D, ' - D, 'h(1"h)~*17)
V(p) = (1"D,1)*(1"h) 2D, *(I - (1"h)'h1")V(h)(I - (1"h)"'1h")D,*

A

10 Expectations of V(q) and V(S) for MQS-HEW

Here, we derive the expectations for V(g) and V(S) in MQS-HEW when k£ = 1. To do so, we make a
simplified assumption that SNP genotypes are independently and identically distributed from a standard
normal distribution. This normality assumption allows us to use Isserlis’ theorem (also known as Wick’s
theorem) to obtain a rather simple (but non-trivial) result. Though simplistic, the normality assumption

is useful to understand the behavior of V(gq) and V(S).
To simplify notation, we denote

U=tr(XXTXXT), U =trX'XTX'XT), V=tr(XXT), V' =tr(XXT), (35)

where X is an n by p matrix, X’ is an m by p submatrix of X. Under the normality assumption, each
row of X follows MV N(0,X) with an identity p by p SNP covariance matrix 3.

Both V(q) and V/(S) are functions of U, U’, V and V’. To obtain the expectations of V(g) and V(S),
we first obtain the expectation and variance of U and V.

First, we have

P P n
EU) = E(Z Z(Z e + QZfﬂlixlﬂmxz/j))

i=1j=1 I=1 1A
=Y > (nE(«faf;) + n(n — 1) E(zyy)?)
i=1 j=1
=> > (n(Bu%j; +257) + n(n — 1)E7))
i=1 j=1

=np? + (n* + n)p. (36)



26

and
BQ_D > ) Z ziiz;) Z T wiy) Z Tiira1)
4,3 3 1=1
= Z Z(nE mlixljxli,xlj,) +n(n— 1)(QE(xlixljxlirxljf)E(wlilejr) + 2E(Jclixljx12i,xl2j,)E(Jclixlj))
0,j g’

+n(n — 1)(BE(zfz;) E(ziyat;) + 2B (zywwr g )?)
+n(n—1)(n = 2)(E(af;a};) Bz miy)® + By ) E(xfyaly) + 4Bz o) E(xywyg) Bz y))
+n(n—1)(n —2)(n = 3) E(zi1) E(xiy)?)

= Z Z(nE J:Mxljx”/xfj/) +n(n— 1)(2E(xlixljxli/:ﬁlj/)2i/j/ + 2E(mlixljz52i,x12j/)2ij)
i .5

+n(n —1)((Z:35; + 222')(21/1’21 g+ 221/3/) +2(24 B0 + T X+ X Ei0)?)

+n(n—1)(n—2)(ZuXj; + 255) 27, + 55, (Zve Ty + 287 0) + 4580 + i By + Bij Bjer) i By )

+n(n—1)(n —2)(n - 3)TLEF )

=n(p* + 12p® 4+ 44p® + 48p) +4n(n — 1)(p® +3 x 2 x p* +4 x 2 x p) +n(n — 1)(p* + 4p> + 4p* + 2(3p? + 6p))
(n—l)( 2)(2(p* + 2p°) 4+ 4(p* + 2p)) + n(n — 1)(n — 2)(n — 3)p?

=n’p* + (2n3 + 2n% + 8n)p® + (n* + 2n® + 21n? + 20n)p? + (8n> 4 20n? + 20n)p. (37)

Next, we have

=B ah)=n) Zi=np, (38)
i l i

and
B%) = B(Q > at)") ZZE Qi) ah)
= Z Z (nE(z}a3;) + n(n —1)E(2})E(z},))
= Z Z nS%,; + 202 4 n(n — 1)S,55)
=n’p* + 2np, (39)
and

=B(Q_ > ai)) =2 > > B i) Q)OO ai)
N L A l l l l
= Z Z Z Z(nE(lelengle/x?]'> +4n(n — 1)E(xl2ixl2jxl2i’)E(ml2j’)

+ 3n(n — 1)E($l2ix12j)E($12i'$l2j') +6n(n —1)(n — 2)E(‘Tl2ixl2j>E($l2i’)E(m%j’)
+n(n—1)(n—2)(n - 3)E(af,) E(a};) E(a3) E(xf;)

= n(p* +12p* + 44p® 4 48p) + 4n(n — 1)p(p” + 6p” + 8p) + 3n(n — 1)(p” + 2p)?

+6n(n — 1)(n — 2)p*(p* + 2p) + n(n — 1)(n — 2)(n — 3)p*

= npt + 12n%p> + 44n?p? + 48np. (40)
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Finally, we have

B2 = B TN (A = 33 3 3 s (A )

l

= Z Z Z Z (nE( Illejzlz’xlj /) +n(n— 1)(2E(Ille]xlz )E(Ilj/) + 2E(Ilixlj1512¢/$12j/)E(zlixlj))

[

+n(n—1)(E (ﬂfzzxzj)E(fvzzﬁz] ) + 2B(zyxyafy ) E(ryma;))
+n(n —1)(n = 2)(E(afx];) E(af ) E(a7),) + 4B (zuxyaf, ) E(zwy) B(xi;) + E(euzy)? E(xfag;))
+n(n—1)(n = 2)(n = 3)E(z21;)* E(a7,) E(xf;))
= n(p* +12p°® + 44p® + 48p) + n(n — 1)(p® + 6p* + 8p)(2p + 2)
+n(n—1)((p* + 2p)* + 2(p° + 4p” + 4p))
+n(n—1)(n—2)(p* + 2p* + 5(p° + 2p)p) + n(n — 1)(n — 2)(n — 3)p°
(n*

=n3p* + (n* 4+ n® + 10n?)p® + (100> + 1002 + 24n)p® + (24n> + 24n)p. (41)

Above, we have used the following properties based on the Isserlis’ theorem

E(zizi;) = Zi; = p, (42)

(J;hmlj) i+ 222» =p% +2p, (43)
E(zpzyxay) = 2805 + X 255 + 255 250 = 3p?, (44)
E(a:“a:ljx“/xl] ) =338 + 28,3, 4 28,3, 3

=pP4+2x2xp*4+(2x24+2x%x3)xp=7p°+4p> + 10p, (45)
4 4 4
Z E(zjahalas,) =p* + (2> x 2 xp3+ <1) X4 x2xp*+ <2> X2xp?+6x4x2p
1,5,4" 5’
= p* 4 12p® + 44p® + 48p. (46)

Now we are ready to evaluate E(V (q)) and E(V(S)). First, we have

B(V(q)) = EQtr(K ~ D(K ~ 1))/n') = 2B(U/p* ~ 2V/p + n)/n* = O(—-) (47)

n2p
where we use n instead of n — 1 to reflect the fact that genotypes are not centered here.
Next, because S = U’/V'?, with Delta method, we have
E(V(S’)) B EU? E(UHE(V™?)?2 +EV*YEU)? - EU'V?EU)EV'?) _of 4
- E(V/2)2 E(U’)2E(V’2)2 -

) (48)

m2p?

11 Simulations to Validate E(V(q)) and E(V(S))

Because deriving the equations 47 and 48 involves complicated algebra, we verify the correctness of the
above expectations using simulations.

First, we perform four sets of simulations using simulated genotypes. Specifically, for each SNP, we
first simulate its minor allele frequency from a uniform distribution between 0.1 and 0.5. Based on the
minor allele frequency, we simulate genotypes from a binomial distribution.
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The first two sets of simulations are used to validate E(V (q)) = O(n%,p). We first fix p = 10,000. For
each n € {100,200, --- , 1,000}, we simulate one X and 10,000 y to obtain the sample variance V(g). Each
y is from a standard normal distribution. We use this set of simulations to show that n = 1/2/(V(q)p)
(Figure Sla). Next, we fix n = 1,000. For each p € {1,000, 2,000, ---,10,000}, we simulate one X and
10,000 y to obtain the sample variance V(g). We use this set of simulations to show that p = 2/(V (q)n?)
(Figure S1b).

The second two sets of simulations are used to validate E(V(S)) = O(m%pz). We first fix n = 1,000,
p = 10,000 and simulate one X. For each value of m € {10,20,---,100}, we draw 10,000 X’ from X to

obtain the sample variance V(5). We use this set of simulations to show that n = 2/4/(V(S)p?) (Figure

Slc). In addition, the sample mean of S computed with a small m is a good estimate of S (Table S1).
Next, we fix n = 1,000 and m = 100. For each p = {1,000, 2,000,---,10,000}, we simulate one X and

draw 10,000 X’ from X to obtain the sample variance V(S). We use this set of simulations to show that

p=2/1/(V(S)n?) (Figure S1d).

Next, we perform three additional sets of simulations using real genotypes from either the Australia
data or the Finland data. In the Australia data, we order all SNPs (p = 4,352,968) by their genomic
location, and select from these SNPs 319,147 evenly spaced SNPs for simulations. Thus, we use p =
319,147 SNPs from both data sets for simulations.

In the first set of simulations, we fix p = 319, 147. For each n € {100,200, --,1,000}, we randomly
draw n individuals to obtain X and further simulate 10,000 y to obtain the sample variance V(g). We
use this set of simulations to show that n = /2/(V(q)p’) (Figure Sla and S1b), where p’ is estimated
with a linear regression of \/2/(V(g)) on n. In addition, the sample mean S across the 10,000 sets of
X'’ based on small values of m is a good estimate of S computed using all n samples. However, unlike
the simulated genotype case, S often over-estimates S for small m though the bias quickly diminishes for
moderate m (Table S1).

In the second set of simulations, we fix both n and p = 319,147 (n = 3,925 in the Australia data and
n = 5,123 in the Finland data). For each m € {10,20,---,100}, we randomly draw 10,000 sets of X'

A~

to obtain V/(S). We use this set of simulations to show that n = 2/4/(V(S)p'2) (Figure Slc and S1d),

where p/ is estimated with a linear regression of 2/4/(V(S)) on n.

Finally, we estimate the effective number of independent SNPs in the two data sets. Specifically, we
order all 319,147 SNPs from the two data sets by their genomic location, and select from these SNPs a
subset of p evenly spaced SNPs for simulation. For each value of p, we estimate the effective number of
independent SNPs, p’, in the two data sets. As expected, p’ increases with p linearly at the beginning but
eventually reaches a limiting value (Figure S3). In addition, p’ computed based on either V(¢) or V(3) are
close to each other (Figure S3). From the real data, we estimate p;, = 28,913, p; = 31,165, p;, = 17,618
in the Australia data, p;, = 28,913, p} = 27,842, p, = 7,578 in the Finland data (p = 33,077 for the full
Australia data with p = 4,352,968). Here pj, p; and p;, are the effective number of independent SNPs
with respect to S, V(S), and V(q). p, = p|, because under the null V(¢) ~ 25/n?.

12 GWAS Data Sets

We used five GWAS data sets in the present study.

The Australia data contain height measurements for 3925 Australian individuals with 4,352,968 im-
puted SNPs [1]. The phenotypes were already regressed out of age and sex effects, and were quantile
normalized to a standard normal distribution afterwards [1]. A total of typed 294,831 SNPs were avail-
able after stringent quality control [1]. We imputed SNPs based on the 1000 genomes project reference
panel [27] using Shapeit [34] and IMPUTE2 [32]. After imputation, we removed SNPs with either a low
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minor allele frequency (< 1%) or missing values.

The Finland data (NFBC1966) contain information for 5,123 individuals with multiple metabolic
traits measured and 319,147 SNPs typed [35]. We selected ten phenotypes, including C-reactive protein
(CRP), glucose, insulin, total cholesterol (TC), high-density lipoprotein (HDL), low-density lipoprotein
(LDL), triglycerides (TG), body mass index (BMI), systolic bollod pressure (SysBP) and diastolic blood
pressure (DiaBP). For each phenotype, we quantile-transformed the phenotypic values to a standard
normal distribution, regressed out effects of sex, oral contraceptives and pregnancy status [35], and
quantile-transformed the residuals to a standard normal distribution again. We selected individuals and
SNPs following the previous study [36]. We replaced the missing genotypes for a given SNP with its
mean genotype value. In addition, we excluded individuals with one or more phenotypes missing.

The WTCCC data set is from the Wellcome trust case control consortium (WTCCC) 1 study [37].
The data set consists of about 14,000 cases of seven common diseases, including 1868 cases of bipolar
disorder (BD), 1926 cases of coronary artery disease (CAD), 1748 cases of Crohn’s disease (CD), 1952
cases of hypertension (HT'), 1860 cases rheumatoid arthritis (RA), 1963 cases of type 1 diabetes (T1D)
and 1924 cases of type 2 diabetes (T2D), as well as 2938 shared controls. We selected a total of 458,868
shared SNPs following a previous study [2].

The Framingham heart study (FHS) data set contains genotype data on 6,950 individuals and 394,174
quality-controlled SNPs with MAF> 0.01 [38]. We performed analysis on four commonly used blood lipid
traits including HDL (n = 6,850), LDL (n = 6,855), TC (n = 3,806), and TG (n = 3,806). Each trait
was quantile normalized to a standard normal distribution before analysis.

Finally, we used eight phenotypes from four consortium studies. Only summary statistics (z-scores)
are available for these phenotypes. These phenotypes include BMI (n = 120,569, p =), height (HT,
n = 129,945) from the GINAT consortium [39,40], HDL (n = 88,754), LDL (n = 84,685), TC (n =
89,005) and TG (n = 85,691) from the Global Lipids Genetics Consortium [41], fasting glucose (FG, n =
58,074) from the MAGIC consortium [42], and Crohn’s disease (CD, n = 21,447) from the International
Inflammatory Bowel Disease Genetics Consortium [43]. The data have been pre-processed by a previous
study [44]. We further selected z-scores from a common set of p = 5,014, 740 SNPs for the analysis. We
paired the summary statistics with genotypes for the same set of SNPs from 503 individuals of European
ancestry in the 1000 genomes project [27]. We emphasize that it is important to use the same set of
SNPs for both the study sample and the reference panel; a mis-match could create severe bias. The 503
individuals are from five different populations and include Utah residents (CEPH) with northern and
western European ancestry (CEU), British in England and Scotland (GBR), Iberian Population in Spain
(IBS), Finnish in Finland (FIN) and Toscani in Italia (TSI). To control for the population stratification
among the five populations, we used the population indicators as covariates and centered genotypes in
each population separately before computing S.

13 Methods for Comparison

We compare five different methods in the Results section. (1) REML is implemented GEMMA based
on the AI algorithm [25]. We do not constrain the REML estimates to be non-negative. Unconstrained
estimation ensures unbiasedness of the estimates and calibration of the standard errors. (2) HE is
implemented in GEMMA. We use our asymptotic form to compute the standard errors. (3) LDSC is
implemented in the LDSC software [6,22,23]. LD scores are computed using genotypes from all individuals
based on either the default 1 MB sliding window. or an extended 10 MB sliding window. When fitting
LDSC, we apply the flag “—not-M-5-50” to use all SNPs. (4) MQS-HEW is implemented in GEMMA.
S is estimated using genotype data from m = 400 randomly selected individuals. (5) MQS-LDW is
implemented in GEMMA. S is estimated using m = 400 randomly selected individuals. A different set
of m = 400 individuals are chosen in each replicate. The LD scores are also computed from genotypes of
these m = 400 individuals based on a 1 MB sliding window.
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14 Statistical Efficiency and Its Empirical Estimation

Statistical efficiency is an important criterion to compare estimation methods and it effectively measures
how close the estimates are to the ground truth. Statistical efficiency for the variance component is
formally defined as E((6% — ¢2)?), which, in the case of unbiased estimate, is the variance V(5%). In
simulations, we can use the mean squared error (MSE) of the estimates from M simulation replicates, or
MSE(6%) = 1/M Zi‘f:l(&?n — 02%)2, as an empirical estimate of the statistical efficiency. We can also
contrast the MSE of estimates from one method with the MSE of REML estimates by computing the
ratio between the two, or MSE(6%)/MSE(6%51), as an empirical measure of the relative statistical
efficiency of REML with respect to the other method.

In addition, for MQS-HEW, we can formally quantify its loss of statistical efficiency due to the
subsampling strategy as E((J%QS_HEW —0%4)%)/E((0% 5 —c%)?). This loss of statistical efficiency can
again be empirically estimated by computing the ratio of the two corresponding MSEs across simulation
replicates.

15 Simulations

We describe simulation details here.

For k = 1 LMM simulations, we first compute the relatedness matrix K using genotype matrix X
with K = XX7 /p. We then simulate the n-vector of genetic random effects g from a multivariate normal
distribution with covariance h?K. We simulate the n-vector of residual errors € from independent normal
distributions with variance 1 — h%2. We obtain the phenotype as a summation of the genetic effects and
the residual errors. We examine three scenarios with heritability h? set to be either 0, 0.25, or 0.5.
For each scenario, we repeat the above steps to create 1,000 simulation replicates. Note that the above
LMM simulation effectively simulates phenotypes from a polygenic model where all SNPs are causal and
each SNP effect size comes from a normal distribution [2]. We use LMM as main simulations in order
to examine the statistical properties of various methods for the variance component model. However,
we also perform additional simulations to examine the robustness of these methods in ascertained case
control settings as well as in sparse settings (see below).

For k = 6 LMM simulations, we first annotate the genome using six categories as in [45]. The six
categories include coding, untranslated region (UTR), promoter, DNAse hyper-sensitivity regions (DHS),
intronic and intergenic regions. SNPs are classified into these six categories based on genomic location.
We then compute a genetic relatedness matrix K; = X; X7 /p, for each category i using the category
specific genotype matrix X;. We then simulate the n-vector of genetic random effects g; for i’th category
from a multivariate normal distribution with covariance thz We simulate the n-vector of residual
errors € from independent normal distributions with variance 1 — h2, where h? = 2?21 h?. We obtain
the phenotype as a summation of the genetic effects from all categories and the residual errors. We
examine three different scenarios: (I) a null scenario where all variance components are zero (h? = 0 for
i=1,---,6); (II) an alternative scenario with total SNP heritability h? = 0.5, and with each category
explaining an equal proportion (h? = 0.5/6 for i = 1,---,6); (III) a more realistic alternative scenario
with h? = 0.5 and with DHS explaining a large proportion of heritability (h% = 0.04,h3 = 0.02,h3 =
0.02,h2 = 0.4,h2 = 0.01, hZ = 0.01). For each scenario, we perform 1,000 replicates.

For ascertained case control simulations, we simulated 2,500 cases, 2,500 controls and 10,000 inde-
pendent causal SNPs from a liability threshold model with h? = 0.5 and a disease prevalence of 0.1%
using the software provided by [24]. We either use the 10,000 causal SNPs directly to form a non-sparse
simulation scenario, or pair them with 90,000 non-causal independent SNPs to form a sparse simulation
scenario. We then estimate heritability on the observed scale with different methods and transform the
estimates back to the liability scale ( [2,24,46]). Because of the small number of simulated SNPs, we use
genome-wide SNPs to compute the LD scores.
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For sparse simulations, we randomly selected 100 or 1,000 SNPs from the Finland data to be causal.
We simulated their effects independently from a standard normal distribution. We simulate the n-vector
of residual errors € from independent normal distributions with variance 1 —h2?. We then scale the genetic
effects by a constant so that the genetic effects in total explains a fixed heritability value of h2 = 0.5
(h? =V (g)/(V(g) + V(e)), where V denotes sample variance and g is the summation of genetic effects
from the causal SNPs).
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