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Supplementary Note: Model and Algorithm Details for
DPR

The latent Dirichlet process regression model

We consider the following multiple linear regression model
y=Wa + XB +¢&,e~N(0,6°L ), (1)
where y is an n-vector of phenotypes measured on 7 individuals; W is an n by ¢ matrix of

covariates including a column of Is for the intercept term; & is a c-vector of coefficients;
X is an n by p matrix of genotypes; B is the corresponding p-vector of effect sizes; € is
an n-vector of residual errors where each element is assumed to be independently and
identically distributed from a normal distribution with variance o>. Note that we use B
here instead of P as in the main text for reasons that will become clear shortly.

As explained in the main text, we assign a normal prior N(0, 6°c>) on each element of
B, and we further assign a Dirichlet process prior on the variance parameter . (Note
that different from the main text, we also scale the variance with the error variance o~ to
simply the algorithm.) Integrating out ¢° induces a Dirichlet process normal mixture

prior on J

B ~> 7N, (c! +02)o),
k=1

k-1

7, =v, [ [a-v).v, ~ Beta(l, 1),

I=1

2)

where 6} +0; (scaled by o) is the variance for each normal component. Again, to
simply the algorithm, different from the main text, we add a common variance o, to

each variance component and we set 6; = 0 when k = 1. We refer to the above model

based on equations (1) and (2) as the latent Dirichlet Process Regression (DPR) model.

2
e

For the hyper-parameters @, o;, o;, 6., and Ain the model, we consider the following

priors
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o, ~N(0,0.0,),0, — oo,
o; ~ inverse-gamma (a,, , b,, ),
o; ~ inverse-gamma (a,,, b, ), (3)
o ~ inverse-gamma (a,,, b,,),
A~ gamma(ay,, by, ),
where we set a,,,b,, ,a,,, b,,, a,,,and b,, in the inverse gamma distributions to be 0.1;

we set a,, and b,, in the gamma distribution to be 1 and 0.1; and we use a limiting

normal prior for each a; with the normal variance goes to infinity, since generally there is
enough information in the likelihood to overwhelm any reasonable prior assumption for
these parameters.

To improve mixing, following', we group the effect sizes that correspond to the first
normal component with the smallest variance o, in equation (2) into a random effects
term u:

u=Xb ~ N(0, 5;6°K), “4)
where K =XX"/ p is the genetic relatedness matrix (GRM)'* computed using centered

SNPs. Note that the GRM is typically positive semi-definite with one eigen-value being
zero due to genotype centering. We do not need to deal with the zero eigenvalue because
our algorithms do not involve the inverse of GRM. This way, the model in equation (1)

becomes
y=Woa+XB+u+ge~N(©0,01), (5)
explaining our use of B in equation (1). In our notation, B = p + b. The corresponding
prior on each element of b is
b~ N(0,0;5-/ p), (6)

and the corresponding prior on each element of £ is

B, ~mN(0,0x62)+ > N0, 0;5.). (7)
k=2

We will develop algorithms for fitting the equivalent model defined in equation (5) in the

following text. With the fitting algorithm, we can obtain the posterior mean of B as the
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sum of the posterior mean of B and the posterior mean of b. We use the posterior mean of

B to compute prediction errors.

Difference between DPR and BayesR

Before we proceed further, it is useful to clarify the difference between DPR and the
previously proposed method BayesR®. While our method is motivated in part by BayesR,
DPR is different from BayesR in five important areas. First, BayesR is a sparse model
while DPR is a non-sparse model: BayesR assumes that most SNPs have zero effects
while DPR assumes that all SNPs have non-zero effects. As a result, BayesR and DPR
are expected to perform differently in sparse vs non-sparse settings. Second, BayesR
fixes the ratio between the variance parameters from the three non-zero components to be
0.01:0.1:1. In contrast, DPR estimates the variance of all non-zero components from the
data at hand. Inferring parameters from the data instead of fixing them to pre-set values is
expected to improve prediction performance. Third, BayesR uses a mixture of three
normal distributions for the non-zero component, while DPR uses infinitely many normal
distributions a priori. Using three normals can sometimes fail to capture the complicated
effect size distributions encountered in a range of genetic architectures, as is evident in
simulations presented in the main text. Fourth, importantly, it is not straightforward to
extend BayesR to accommodate a larger number of normal components. Consequently,
while the BayesR software allows users to specify an arbitrary number of components, in
those analyses, BayesR also requires users to provide the variance component estimates
for these components. It is far from trivial to figure out how one should obtain these
variance component estimates for BayesR. In contrast, DPR provides a principled way to
extend the simple normal model to accommodate a much larger number of normal
components, ensuring robust prediction performance across a range of settings. Fifth, as
we will show below, we fix the number of normal components in DPR in practice due to

computational reasons. As has been previously shown in other settings'"'?

, using a small
number of components to approximate the Dirichlet process can undermine its
performance. Therefore, we do want to acknowledge that the results we present in the
main text are likely conservative estimates of DPR’s performance. Better approximations

to the Dirichlet process may improve DPR’s prediction performance further.

3/44



77

78
79
80

81
82

&3
84

85

86

87
88
&9
90

91

92

93

94

MCMC sampling

Here, we describe our Markov Chain Monte Carlo (MCMC) sampling algorithm to
obtain the posterior samples from DPR. To facilitate MCMC, for each SNP i, we assign a
vector of indicator variables 7, € {0,1} to indicate which normal component S comes
from. To improve convergence, we integrate out u in model (5) and then perform Gibbs
sampling by using the conditional distributions for each parameter in turn. Specifically,
let 6=(a,B,0,,0:,V,, %A 0.) includes all unknown parameters in model (5), our
joint log marginal posterior after integrating out u is
log p(8]y) =log p(y| . B, 5;, 6;) +log p(B| ¥, 0}, 57)

+log p(y|v,) +log p(v, | M) + log p(o; | ay,, by, ) + log p(c; | ay,, b,,)
+log p(c} | ayy.by,) + log p(X| ay,, by,)
= C—log|o?H |~ (y - Wor~ XB)' H''(y - Wt Xp)

e

+ Y37, (- log(e?) - log(c?) —%) ®)

i k=2 ke

+ 37 Gogv,) + X log(l =v,)) + 3 (0~ Dlog(1 ;) + log(1)

- Z(aOk +1) log(cﬁ) - ZbOkGZZ —(a,, +1) log(cg) - bOeG;Z
k k
—(ay, +1) log((’i) - bobG;2 + (ay, —Dlog(h) — by A,
where H=1,+6,K and C is a normalizing constant. To simplify notation, we will
ignore all constant terms from now on. Based on the joint posterior, we can derive the
conditional posterior distribution for each parameter in turn. When we derive these

conditional distributions, we will also ignore the other parameters which these

distributions are conditional on to simplify the presentation.

Sampling o

First, for a; we have

-2 T -1
ow. Hw

log p(at, | ) == ——1——a} + 0w [H (v = Y w0, - XPa,. ()

m#j

Therefore, the conditional distribution for sampling «; is p(«;|.)=N(m,, sf ), where
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w/ H ' (y-Yw,a, —XB)

m#j

m; = Tyy-! ’
! w, H'w, (10)
2
G
SJ% = TI_I€—1
w, H'w,
Sampling B, and v,
For B, and 7, , we have
o ’x'H'x, _ _
log p(By 7y 1) = === + o/ XU (y - Wa - 3 x,8,)

m#i (11)

k-1

1 1 1
+ Y (—Elog(cﬁ) - Elog(Gi) - Ecezﬁkzﬂi) + 7, (log(v,) + D log(1-v,)).
=1

Therefore, the conditional distributions for sampling 8, and ¥, are

p(ﬁ,’k | Vic :1’-) :N(mik’sii)’

2 - (12)
Py, =1]) =1, = em,-k/ZS,k+log<s,-k>—log<<se>—log<ck>+1og<vk>+Z,=l log(l—m’
where
xH'(y-Wa->x,5)
my = T 1 m? ’
X; H X, +G; (13)
o %
i x H'x, +c;°
Sampling vy
For v, we have
log p(v, [) =D 2 log(v,) + > > 7, log(l=v,) + (k=) log(1 - v,). (14)

i I=k+l1

Therefore, the conditional distribution for sampling v 1s p(v, |.) = Beta(x,, A,), where

K, :Z%k +1,

. (15)
=D > 7+

i I=k+1
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Sampling o}

For o}, we have

2 2
+ay, +1)log(c;) — (% + Dy )0 (16)

i
log p(o; |.)=—(Zzl .

Therefore, the conditional distribution for sampling o, is

p(c; |.) =inverse-gamma(a,, b,) , where

1
a; :EZi%k + g,
1 (17)
b, zz_cgziﬁkﬁii + by,

Sampling A

For A, we have
log p(M.) =MD log(1-v,) = by,) +log(M)(ay, + D 1) (18)
k k

Therefore, the conditional distribution for sampling A is p(A|.) = gamma(aq,, b, ), where

a, = ay, +Zlk,

! (19)
b, =by, — Y log(1-v,).

k

Sampling o’

For o?, we have

log p(c2|)==((n+ D> 7))/ 2+a,, +1)log(c2) - %SSR Xo)
i k=2
(20)

1 - _
5 (Zz%’kﬁiickz +2b,,)0,”.
Tk

Therefore, the conditional distribution for sampling 6> is p(c? |.) = inverse-gamma(a,, b.)

where
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ae=n/2+227/ik/2+a06,

i k=2

b, :%(SSR+Zz%k,/3i§/c,§ +2b,,), (21)

i k=2

SSR =(y — Wo.— XB) H™'(y — Wou — XP).

Sampling o}
For o;, we have

1 1 -
log p(o;, )==Zlog[H|-—=(y - Wa - XB) H (y - Wa.— XB) )

2 -2

—(ay, +1log(c}) — b0,
which is in an unknown distributional form. Nevertheless, it is straightforward to sample
from this univariate distribution using reject sampling, importance sampling or other

standard methods®. Here, we sample o, based on re-parameterization of o, following'”.

Specifically, we define a new parameter (5%)>%’
2
W=t 23
Gi +1 23)

which is bounded between 0 and 1. The log-posterior conditional distribution for 4 is

log p(h* |.) =log p(c,(h*)].) = 2log(1 - h*), (24)
where p(o;(h*)|.) is the posterior conditional distribution given in (22) with
o;(h*)=h"/(1-h*). We then use the Metropolis-Hastings algorithm to generate

posterior samples for A%, In particular, we use the independent random walk algorithm for

h* with a Beta(2,8) distribution as the proposal distribution. With each sampled value of

}?, we can obtain a sampled value of o = h*/(1-h>).

Sampling b
Finally, because of the relationship between u and b in equation (4), we can obtain

the posterior conditional distribution for b as

2
(0) _ _ _ _
pb|.)= MVNP<?I’XTH (y - Wa-XB),c,0.(p"'1, - p~0,X'H'X)), (25

7/44



144
145
146

147

148
149

150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172

where MVN,(p, X) is a p-dimensional multivariate normal distribution with mean p and
variance-covariance X. To reduce variance, we use the Rao-Blackwellised approximation
to compute the mean of b at the end of the MCMC sampling, with
L
b=Llx’ %Z(Gg)“)(H(“)—‘(y -Wa' - XB"). (26)
p

/=1

where L is the total iterations of MCMC after burn in, ¢ denotes the posterior samples.

These b are added back to the posterior mean of B to yield the posterior mean of B.

Efficient computation

We apply the algebra innovations recently developed for linear mixed models"™’ t

0
improve computational efficiency. Specifically, at the beginning of MCMC, we perform
an eigen decomposition of K = UDU’, where U is the matrix of eigenvectors and D is a

diagonal matrix of eigenvalues"*’

. Then we transform phenotype, genotypes and
covariates as UTy, U'X, and U'W. Afterwards, the likelihood conditional on the
transformed variables become independent, thus alleviating much of the computational
burden associated with the complex covariance structure resulted from the random
effects u.

The per-iteration computational cost of the above naive MCMC algorithm, after
applying the linear mixed model algebra innovations, scales linearly both with the
number of individuals and with the number of SNPs. Such computational cost can still be
burdensome when we have millions of SNPs. To improve computation efficiency further,
we develop a new, prioritized sampling strategy based on the recently developed random

: 10,11
scan Gibbs sampler'”

. Specifically, we take advantage of the fact that for any complex
traits, most SNPs have small effects (or are non-causal) while only a small proportion of
SNPs have large effects (or are causal). The likely causal SNPs are important for
phenotype prediction and their effect sizes need to be estimated accurately. In contrast,
the likely non-causal SNPs often do not influence prediction performance much and their
effect sizes individually do not require accurate estimation. Therefore, it is desirable to
spend a large amount of computational resource on sampling likely causal SNPs to

obtain accurate effect size estimates, while assigning a small amount of resource on

sampling likely non-causal SNPs. Certainly, the above arguments are all conditional on a
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fixed number of SNPs (i.e. spend extra computational resource on updating a fixed
number of likely causal SNPs vs updating a fixed number of likely non-causal SNPs). To
perform such prioritized sampling, we first obtain the top M marginally significant SNPs
using LMM with the GEMMA algorithm. We treat these M selected SNPs as likely
causal SNPs and update their effect sizes in each MCMC iteration. We then treat the
unselected SNPs as likely non-causal SNPs and update their effect sizes once every T
iterations. We set M = 500 and 7 = 10 (both are set to allow fast computation since the
association signals are relatively strong in these two data) for the cattle and maize data,
M =10’ and T = 2 (the two are set differently as the signals are relatively weak in this
data) for the FHS data in the present study; for the GEUVADIS data we performed a full
MCMC sampling as the small sample size there allows for efficient computation. Note
that the choice M and T theoretically does not affect the stationary distribution, and we
recommend exploring a few values of M and T in practice to achieve a balance between
speed and accuracy. By prioritizing the computation resource on sampling the likely
causal SNPs, our computational algorithm results in a dramatic reduction in
computational cost, while yielding the same stationary distribution and maintaining the
predictive performance of DPR. As an example, for the three traits MFP, MY and SCS in
the cattle data, our naive MCMC takes approximately 25 hours to run 50,000 MCMC
iterations. In contrast, our prioritized sampling algorithm reduces the computational cost
down to approximately 5 hours, resulting in a five-fold speed improvement. The
prediction performance of the prioritized sampling algorithm remains comparable with
that of the naive MCMC: the resulting R* and MSE from the two algorithms were almost
identical, with a correlation above 0.995 across 20 data splitting replicates. Note that the
prioritizing sampling strategy we employ in DPR differs from the sample strategy used in
BayesR®’, where a different set of M SNPs are used every T iteration. Indeed, our
sampling strategy is still guaranteed to reach the same stationary distribution given a
large number of iterations, regardless which set of M SNPs or which set of M and T
values we choose to perform prioritized sampling.

Finally, we follow the truncated stick-breaking approximation approach of Blei and

12,13

Jordan and approximate the infinite normal mixture by a truncated normal mixture

with K normal components. To ensure that 7, is well defined under the truncated
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approximation (i.e. Z;ﬂk =1), we set v, =1, 1-v, =0 for k>K'*'"*1° With the

truncated Dirichlet process approximation, we can draw posteriors via a simple Gibbs
sampler, thus alleviating much of the computational burden associated with sampling the
full Dirichlet process conditionally through the Chinese restaurant process. Because
different truncated normal mixture approximations may result in different accuracy, we

517 46 select the

treat K as a parameter and use the deviance information criterion (DIC)
optimal K automatically. To do so, we first perform MCMC sampling on a grid of K
values from 2 to 10. For each K, we compute DIC using a small number of MCMC
iterations (5,000). We select the optimal DPR model with the smallest DIC. We then run
a large number of MCMC iterations (50,000) with the optimal DPR model. This strategy
makes the selection of K in our DPR adaptive, while keeping computational cost in check.
Note that this selection strategy may lead to local optimal and consequently hinders the
performance of our method. Alternative and better strategies may improve DPR’s
prediction performance further. For the final 50,000 MCMC iterations, we discarded the
first 10,000 as burn in and kept the remaining 40,000 for parameter estimation. We did
not thin the MCMC chain'®, which may help improve prediction performance further.
Finally, we also provided trace-plots for the log posterior likelihood of our model in all

real data analyses following the recommendation in'>'"’. These trace-plots serve as a

summary assessment of parameter convergence.

Mean Field Variational Inference for DPR

Despite the many algorithm innovations we use, the resulting MCMC algorithm is
still computationally heavy. Therefore, we develop an alternative, much faster, algorithm
based on variational Bayesian approximation'>****. Variational Bayesian approximation

attempts to approximate the joint posterior distribution by a variational distribution,

q(09) =Hj q(8,) , that assumes posterior independence among parameters 6;. To do so,

we minimize the Kullback-Leibler (KL) divergence between p(0]y) and ¢(0)

OV @1V = E - (log_9®
KL(4(8)| p(8]y)) Eq(e)(ogp(9|y))’ (27)

= Eq(e) (logq(8))— Eq(e) (log p(8,y))+1log p(y).
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Because the marginal probability log p(y) does not depend on the variational

distribution, minimizing the KL divergence is equivalent to maximizing the evidence

lower bound (ELBO)
E, 4 (log p(6,y)) - E, 4 (log g(0)). (28)
To obtain the variational approximation, we can use the gradient ascent algorithm to

maximize the above quantity with respect to each €, in turn. For each 6,, we set the

following derivative
O, 5, (I0g p(8,y)) ~ E, 5, (log 4(8))
99(6,)
([ 4(6)E, ., ,(log p(8,y))d6, - [ 4(6,)1og 4(6,)d6,)
) 99(6))
= E,,,(log p(6,y))~logg(6,)~1

(29)

to zero. Because p(0,y) does not contain any parameter in g(6,), this leads to an update
for each 6, in the following form
Ey (g, (logp(8.y) E, g, (logp(8;]6_;.
q(ej)oce (-0, (logp Y)oce (-0;)(logp | Y)). (30)

Inference based on the above factorized form of the variational distribution is commonly
known as the mean field variational Bayesian approximation inference®*>"*%.
We apply the mean field variational Bayesian approximation to DPR. Because

computing ELBO is difficult for non-analytic variational distributions”®*’

, We cannot
integrate out u from model (5) as we do for MCMC. Instead, we keep u. We also denote

g = U'u. Our joint log posterior is
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log p(8,y) = log p(y | &,B,u) +log p(B| ¥,0;,5.) +log p(u|5},5;)
+log p(y|v,)+log p(v, | M) +log p(c; | ay,, by, ) +log p(a;, | ay,,b,,)
+log p(o; | ag,» by, ) +1og p(h| ay,,b,,)
= C - 2log(07) =5 (y~ War— XB- )" (y - Wa— XB-u)
: y
+227k(——10g(0) —10g(0k)

22
i k=2 2

)
”1 2 n 2 T, 2 2y-\-1
5 Og(GE)——log(Gb)——log!K\——ll (0,0,K)"u

+Zz;fk(log(v)+210g(l V) )+Z((x Dlog(1-v,)+log()))

i k=1

—Zk:(aOk +1) 1og(c,§)—zk:b0kc —(a,, +1)log(c?) - b,,0,

—(ay, +1)log(c;) —by,0;” + (ay, —1)log(h) — by 1, 1)
where again C is a normalizing constant. We will ignore the constant terms in the
following updates.

We follow the truncated stick-breaking approximation approach of Blei and Jordan'?
and use a finite mixture with a fixed number of normal components, K, as an
approximation to the posterior distribution. The parameter K here is considered as a
variational parameter and we choose K by optimizing ELBO. Note again that although
we use a finite mixture as an approximation to the posterior distribution, our likelihood
still consists of a mixture of infinitely many normal distributions'*. To choose K, we
perform variational inference with DPR on different K values ranging from 2 to 10.
Following'?, we then choose the optimal DPR model with the largest ELBO and we
present results based on the optimal DPR.

Variational distribution for o,
First, for a;,we have

E -2 -T )

+E(@ )W, (y-D  w,E(a,) - XEP)- E(u))e,.

m#j
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Therefore, the variation distribution for ¢; is g(e;) = N(m,, sjz. ), where

w/(y-Yw,E(a,) - XEB)- E(u))

m#j

m; =

E(c2Y"
§% = ()

J

T b
W, W,

T .
Wj Wj

Variational distributions for B, and y,

For B, and y, , we have

logQ(IBik’%k):_

E(c)

T
)X, X

i E(ﬂ[Z)

2
+E(,")x; (y — WE(0) - D X, E(B,)~ E()) 3

m#i

+}/l.k(—;logE(cg)—;logE(cﬁ)—;E(sz)E(cez) 2)

+7, (logE(v, )+§logE(1—V, ).

=1

A natural update form for ¢(f,,7,) is thus

q(B, | 7 =1)=N(mik’Sii)7
gV =D=¢; <e

where

3, 1253 +og(sy )~ (log(0, )~ E (log(, ) +E(log(v )+ E(log(1-v,))

b

X" (y = WE() - x,E(f,)~ E())

m#i

m; =

b

x,'x, + E(c}})

'2 _ E(G;Z)_l
“oxx +E(c?)

Variational distribution for v

For v, we have
logq(v,)= ZE(%‘k )log(v,)+

Thus g(v,) = Beta(x,, A, ), where

> S E()log(1=v,) + (EQ) -1 log(1-v, ).

i I=k+1
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290

K. = ZE(%k)"'la

r=S S E(r)+EQ).

Variational distribution for o,

For o}, we have

202
g g(o1) =~ )

i I=k+1

+a, +1) log(ci) —(

Thus ¢(c;) = inverse-gamma(a, ,b, ), where

1
@ :EZ,-E(%k)'*'aow

D EVBE(S,) .
2

1 _
b, = EZ,E(%k Ii)E(Gez)"'bOk-

Variational distribution for 4

For A, we have

log g(2) = (Y. log E(1=v,) — by, )+ log()(dg, + D 1,).

Thus g(A) = gamma(a, ,b, ), where

a, = ay, +21k,
k

b, =by — Y log E(1-v,).
k

Variational distribution for g

For g, we have

1

b, )o.>.

0k /> k

(38)

(39)

(40)

(41)

(42)

logg(g) =~ Y (U'y-U'"WE(o)-U'XEB)-g)" (U'y - U WE(er) - U'XE(B) - g)

1
—Egr(cﬁﬁil))“ g

Thus g(g) =MVN, (u,X), where
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p=(E(c,’D)+1,)"(U'y-U"WE(a) - U"XE(B)),

(44)
2=(E(c;’D)+1,) " E(c)’)".

Here, the covariance matrix is diagonal, which facilitates computation. As in MCMC, we

use the relationship in equation (4) to obtain the mean of b at the end of the algorithm.

The estimated mean of b is added back to the mean of B to obtain a mean estimate for J3 .

Variational distribution for o

For o;, we have
logg(6}) == log(0) ~ 07 E(8)* 1 E(dio?)~ (a +DIog(@) =y, (49)
where d; is the ith diagonal element of D. Thus ¢(c; ) = inverse-gamma(a,,b, ), where

a, = n+a

b~ 5 " “obo
; (46)

b, ZEZE(gi)zE(di_]G;Z)-i_bOb'

Variational distribution for o’

Finally, for 62, we have

logg(c?) = —(n+ZZE(7/ik)/2+aOe +1) log(ci)—%AXGf
i k=2
(47)

1 _ _
L S EG BB+ B By B+ 28,007
ik i
Thus ¢(c>) = inverse-gamma(a,,b,), where

a,= n+ZZE(}/ik)/2+a0€,

i k=2

b= A+ L EG DG + T E( VEGd )+ 2,).

i k=2

(48)
4=(U"y-U'WE(0)-U'XEB)- E(g))" (U"y - U"WE(o) - U'XE(B) - E(2))
F2WIW s+ D D XX (YE () +53) = QUE (1 )my ).

where X2 is the ith diagonal element of X given in (44).
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306 To evaluate all the above expectations, we need
Eq(vk) (log(v,)) =¥ (x,)—¥(x, +4,),
Eq(vk) (log(1-v) =¥(4) - ¥ (Kx, + 4),

Ey iy (B = Zk:‘Pik (my, +53),
Eq(}’,-,ﬁi)(ﬁi )= Zk:(ﬂikmik,
Eq(a_,)(“./z') =m; +s7,
E o) (0)=m,,
E(g)=u,
E, ) (logoy) = %(log(bk) —-¥(a,)),

2y _ 4
By (o) = b’
k

Eq(?») (logh) =¥(a,)—log(b,),
307 E,;) M) =a, /b, (49)

308  where ¥ is the digamma function.

309 ELBO and convergence

310 We use ELBO to check convergence of the variational algorithm. For the explicit

311  form of ELBO, first, we have
B 1 oo 1
E, ., (log(q(B., 7)) = kz;fﬁ,—k (log @, — Elog(M Xexsy) —5),
1
Eq(aj)(log(q(aj ))) = _Elog(sjz')’

E, i (loga(g)) =~ log(Z, ),

Eq(vk)(log(q(vk ) =logI'(x, +4,)—logI'(x;,)—logI'(X,)
312 (50)

+(x, -1)(¥Y(x,)-Y(x, +1,))
+(A, —D(Y(X)-Y(x, +1))),
Eq(ag)(log(q(ci))) =a, logh, —logI'(a,)+(a, +1)(¥(a,)-logb,)—-a,,
E, . (log(q(c})) = a, logh, ~logT(a,)+(a, +1)(¥(a,)~logh,) ~a,.
Eq(glg)(IOg(Q(Gi ) =a,logb, —logI'(a,)+(a, +1)(¥(a,)—-logb,)—a,,
E ;, (log(qg(1)) =logh, —logIl'(a,)—(1-a,)¥(a,)-a,.
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313  In addition, we have

E, o (log p(6,y)) = —(a, +1)(logh, —'¥(a,)) —%ZZ(PM (logh, —*¥(a,))

—(ay, +1)Y (logh, —¥(a,)) —(c;b +1)(logh, —¥(a,))
A+ T o 53+ T 5, 1+ 28,)
314 S o (51)
+ qu)’k (lP(Kk) _lP(Kk +}\'k) + Z(T(y"z) _lP(Kl +>"1)))
+ (%_1)(2(\11()\'15)_\}’(’(/( +A)))+(a, —1D)(¥(a,)—logh,)
G _p D _p D
_bOk;E bOb bb box bx :
315  Finally,
E, 4,(log(q(0)) =—(a, +D(logd, -¥(a,))—a,
_Z(ak +1)(logh, —¥(a,))
316 —(a, +1)(logh, —¥(a,)) (52)
+ 0 , (P () =¥, +,)+ 2 (P () = (K +2,)

+ (%—1)(2(\11(xk)—ly(xk 20+ (@, ~1)(¥(a,)~logh, ).

317  Therefore, the ELBO is

ELBO = E, 4 (Iog p(8,¥)) ~ E, 5, (log(¢(6))
=logI'(a,)—a,logh,
+logI'(a,)—a,logh, +a,
318 + (logI'(a,)—a, logh, +a,) (53)
k=2

+> (logT(k,)+log"(\, ) —log T'(k, +1,))

1 I, 1 1
=22 9u(log ¢, == log(2mxexsi) =)+ log(s)) +- > log(Z;)
Jj i

i k=2

+10gT(a,)—a, logh, +a, —by, > = —b, 2 %

= b, b, b’
319

320
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Supplementary Figure 1. Comparison of prediction performance of several methods
with DPR.MCMC in simulations when PVE=0.2. Performance is measured by R’
difference with respect to DPR.MCMC, where a negative value (i.e. values below the red
horizontal line) indicates worse performance than DPR.MCMC. The sample R’
differences are obtained from 20 replicates in each scenario. Methods for comparison
include BVSR (cyan), BayesR (chocolate), LMM (purple), MultiBLUP (green), DPR.VB
(red), yMCMC (black blue) and DPR.MCMC. Simulation scenarios include: (A)
Scenario I, which satisfies the DPR modeling assumption; (B) Scenario II, which
satisfies the BayesR modeling assumption; (C) Scenario III, where the number of SNPs
in the large effect group is 10, 100, or 1,000; and (D) Scenario IV, where the effect sizes
are generated from either a normal distribution, a t-distribution or a Laplace distribution.

For each box plot, the bottom and top of the box are the first and third quartiles, while the

18/44



336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355

ends of whiskers represent either the lowest datum within 1.5 interquartile range of the
lower quartile or the highest datum within 1.5 interquartile range of the upper quartile.
For DPR.MCMC, the mean predictive R” in the test set and the standard deviation for the
eight settings are respectively 0.074 (0.020), 0.081 (0.016), 0.076 (0.018), 0.072 (0.019),
0.064 (0.016), 0.083 (0.023), 0.077 (0.016) and 0.077 (0.017).
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Supplementary Figure 2. Comparison of prediction performance of several methods
with DPR.MCMC in simulations when PVE=0.8. Performance is measured by R
difference with respect to DPR.MCMC, where a negative value (i.e. values below the red
horizontal line) indicates worse performance than DPR.MCMC. The sample R’
differences are obtained from 20 replicates in each scenario. Methods for comparison
include BVSR (cyan), BayesR (chocolate), LMM (purple), MultiBLUP (green), DPR.VB
(red), yMCMC (black blue) and DPR.MCMC. Simulation scenarios include: (A)
Scenario I, which satisfies the DPR modeling assumption; (B) Scenario II, which
satisfies the BayesR modeling assumption; (C) Scenario III, where the number of SNPs
in the large effect group is 10, 100, or 1,000; and (D) Scenario IV, where the effect sizes
are generated from either a normal distribution, a t-distribution or a Laplace distribution.
For each box plot, the bottom and top of the box are the first and third quartiles, while the
ends of whiskers represent either the lowest datum within 1.5 interquartile range of the

lower quartile or the highest datum within 1.5 interquartile range of the upper quartile.
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For DPR.MCMC, the mean predictive R” in the test set and the standard deviation for the
eight settings are respectively 0.554 (0.028), 0.622 (0.022), 0.569 (0.023), 0.548 (0.027),
0.537 (0.030), 0.543 (0.028), 0.546 (0.027) and 0.539 (0.022).
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Supplementary Figure 3. Comparison of prediction performance of several methods
with DPR.MCMC in simulations when PVE=0.2. Performance is measured by MSE
difference with respect to DPR.MCMC, where a positive value (i.e. values above the red
horizontal line) indicates worse performance than DPR.MCMC. The sample MSE
differences are obtained from 20 replicates in each scenario. Methods for comparison
include BVSR (cyan), BayesR (chocolate), LMM (purple), MultiBLUP (green), DPR.VB
(red), yMCMC (black blue) and DPR.MCMC. Simulation scenarios include: (A)
Scenario I, which satisfies the DPR modeling assumption; (B) Scenario II, which
satisfies the BayesR modeling assumption; (C) Scenario III, where the number of SNPs
in the large effect group is 10, 100, or 1,000; and (D) Scenario IV, where the effect sizes
are generated from either a normal distribution, a t-distribution or a Laplace distribution.
For each box plot, the bottom and top of the box are the first and third quartiles, while the
ends of whiskers represent either the lowest datum within 1.5 interquartile range of the

lower quartile or the highest datum within 1.5 interquartile range of the upper quartile.
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For DPR.MCMC, the mean predictive MSE in the test set and the standard deviation for
the eight settings are respectively 0.919 (0.044), 0.910 (0.038), 0.929 (0.036), 0.944
(0.053), 0.923 (0.038), 0.925 (0.033), 0.924 (0.037) and 0.918 (0.037).
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Supplementary Figure 4. Comparison of prediction performance of several methods
with DPR.MCMC in simulations when PVE=0.5. Performance is measured by MSE
difference with respect to DPR.MCMC, where a positive value (i.e. values above the red
horizontal line) indicates worse performance than DPR.MCMC. The sample MSE
differences are obtained from 20 replicates in each scenario. Methods for comparison
include BVSR (cyan), BayesR (chocolate), LMM (purple), MultiBLUP (green), DPR.VB
(red), yMCMC (black blue) and DPR.MCMC. Simulation scenarios include: (A)
Scenario I, which satisfies the DPR modeling assumption; (B) Scenario II, which
satisfies the BayesR modeling assumption; (C) Scenario III, where the number of SNPs
in the large effect group is 10, 100, or 1,000; and (D) Scenario IV, where the effect sizes
are generated from either a normal distribution, a t-distribution or a Laplace distribution.
For each box plot, the bottom and top of the box are the first and third quartiles, while the
ends of whiskers represent either the lowest datum within 1.5 interquartile range of the

lower quartile or the highest datum within 1.5 interquartile range of the upper quartile.
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For DPR.MCMC, the mean predictive MSE in the test set and the standard deviation for
the eight settings are respectively 0.722 (0.043), 0.701 (0.028), 0.707 (0.034), 0.717
(0.037), 0.727 (0.034), 0.734 (0.040), 0.721 (0.032) and 0.720 (0.028).
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Supplementary Figure 5. Comparison of prediction performance of several methods
with DPR.MCMC in simulations when PVE=0.8. Performance is measured by MSE
difference with respect to DPR.MCMC, where a positive value (i.e. values above the red
horizontal line) indicates worse performance than DPR.MCMC. The sample MSE
differences are obtained from 20 replicates in each scenario. Methods for comparison
include BVSR (cyan), BayesR (chocolate), LMM (purple), MultiBLUP (green), DPR.VB
(red), yMCMC (black blue) and DPR.MCMC. Simulation scenarios include: (A)
Scenario I, which satisfies the DPR modeling assumption; (B) Scenario II, which
satisfies the BayesR modeling assumption; (C) Scenario III, where the number of SNPs
in the large effect group is 10, 100, or 1,000; and (D) Scenario IV, where the effect sizes
are generated from either a normal distribution, a t-distribution or a Laplace distribution.
For each box plot, the bottom and top of the box are the first and third quartiles, while the
ends of whiskers represent either the lowest datum within 1.5 interquartile range of the

lower quartile or the highest datum within 1.5 interquartile range of the upper quartile.
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For DPR.MCMC, the mean predictive MSE in the test set and the standard deviation for
the eight settings are respectively 0.443 (0.032), 0.379 (0.016), 0.429 (0.024), 0.454
(0.023), 0.464 (0.030), 0.465 (0.027), 0.454 (0.032) and 0.457 (0.022).
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Supplementary Figure 6. Comparison of predictive R* from DPR.MCMC with the
other six methods for predicting gene expression levels in the GEUVADIS data.
Scatter plots show (A) predictive R in the test data obtained by DPR.MCMC vs that
obtained by BVSR for all genes; (B) DPRMCMC vs ENET; (C) DPRMCMC vs
BayesR; (D) DPR.MCMC vs LMM; (E) DPRMCMC vs MultiBLUP; (F) DPR.MCMC
vs DPR.VB; (G) DPR.MCMC vs jMCMC. Each panel also lists the number of genes
where DPR.MCMC performs better (first number) and the number of genes where
DPR.MCMC performs worse (second number).
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Supplementary Figure 7. Comparison of prediction performance of several methods
with DPR.MCMC for twelve traits from three data sets. Performance is measured by
MSE difference with respect to DPR.MCMC, where a positive value (i.e. values above
the red horizontal line) indicates worse performance than DPR.MCMC. Methods for
comparison include BVSR (cyan), BayesR (chocolate), LMM (purple), MultiBLUP
(green), DPR.VB (red), jMCMC (black blue) and DPR.MCMC. The sample MSE
differences are obtained from 20 replicates of Monte Carlo cross validation for each trait.
For each box plot, the bottom and top of the box are the first and third quartiles, while the

ends of whiskers represent either the lowest datum within 1.5 interquartile range of the
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lower quartile or the highest datum within 1.5 interquartile range of the upper quartile.
For DPR.MCMC, the mean predictive MSE in the test set and the standard deviation are
0.246 (0.011) for MFP, 0.371 (0.019) for MY, 0.446 (0.028) for SCS, 0.170 (0.012) for
GDD, 0.928 (0.029) for LDL, 0.954 (0.034) for GLU, 0.833 (0.063) for HDL, 0.970
(0.044) for TC, 0.960 (0.035) for TG, 0.519 (0.050) for height, 0.834 (0.065) for weight
and 0.868 (0.074) for BMI. The SNP heritability estimates are 0.912 (0.007) for MFP,
0.810 (0.012) for MY, 0.801 (0.012) for SCS, 0.880 (0.013) for GDD, 0.397 (0.024) for
LDL, 0.357 (0.036) for GLU, 0.418 (0.024) for HDL, 0.402 (0.036) for TC, 0.334 (0.034)
for TG, 0.905 (0.013) for Height, 0.548 (0.022) for Weight and 0.483 (0.023) for BML.
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Supplementary Figure 8. Trace plots of the log posterior likelihood of DPR.MCMC
in real data applications. For each of the twelve traits in the three GWAS data sets, we
plot the log posterior likelihood versus the first 10,000 iterations (i.e. burn-in period)
using the first cross-validation data. In each panel, the log posterior likelihood values

were centered to have a median value of zero.
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564

565  Supplementary Figure 9. Comparison of prediction performance of several methods
566  with DPR.MCMC for eight traits in each of the two sub data sets of FHS. The two

567  sub data sets D1 and D2 have the same sample size but different levels of relatedness
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(individuals in D1 are more related to each other than those in D2). (A) The R? difference
of five plasma traits (LDL, GLU, HDL, TC and TG) with respect to DPR.MCMC in the
D1 and D2 sub data of FHS; (B) The R difference of three anthropometric traits (Height,
Weight and BMI) with respect to DPR.MCMC in the D1 and D2 sub data of FHS. For
each box plot, the bottom and top of the box are the first and third quartiles, while the
ends of whiskers represent either the lowest datum within 1.5 interquartile range of the
lower quartile or the highest datum within 1.5 interquartile range of the upper quartile.
FHS: Framingham heart study.
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Supplementary Figure 10. Prediction performance of various methods are higher in
a data with more related individuals (D1) than in a data with less related
individuals (D2). The two data sets D1 and D2 from FHS have the same sample size but
different levels of relatedness (individuals in D1 are more related to each other than those
in D2). For each trait in the FHS data (x-axis), we first computed the median predictive
R? across 20 replicates in D1 and D2 separately, and then contrast the difference between
the two averaged predictive R* values in the two data sets (DI minus D2; y-axis).
Positive averaged predictive R” differences suggest that all methods have higher

predictive performance in D1 versus D2. FHS: Framingham heart study.
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Supplementary Figure 11. Comparison of prediction performance of several
methods with DPR.MCMC using cross-validation between the two sub data sets of
FHS. The two sub data sets D1 and D2 have the same sample size but different levels of
relatedness (individuals in D1 are more related to each other than those in D2). (A)
Predictive R? difference of different methods in D1 using parameters inferred in D2. For
DPR.MCMC, the R* is 0.024 for LDL, 0.012 for GLU, 0.021 for HDL, 0.022 for TC,
0.016 for TG, 0.131 for Height, 0.061 for Weight and 0.041 for BML. (B) Predictive R’
difference of different methods in D2 using parameters inferred in D1; For DPR.MCMC,
the R* is 0.043 for LDL, 0.009 for GLU, 0.033 for HDL, 0.021 for TC, 0.015 for TG,
0.226 for Height, 0.083 for Weight and 0.058 for BMI. FHS: Framingham heart study.
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610  Supplementary Table 1. Sampling variation of R’ measured by standard deviation
611 across Monte Carlo cross validation replicates for various methods in simulations

612  and real data analysis.

. . DPR
BVSR 1 MCMC BayesR LMM MultiBLUP VB MCMC

Simulations
PVE=0.2
I 0.019 0.019 0.020  0.019 0.019 0.019 0.019
II 0.016 0.016 0.016  0.015 0.015 0.016 0.016
I 10 0.017 0.017 0.019 0.018 0.018 0.017 0.017

100 0.018 0.018 0.018 0.019 0.019 0.018 0.018

1,000 0.015 0.015 0.015  0.016 0.016 0.015  0.015
IV normal 0.023 0.023 0.023  0.023 0.023 0.023  0.023

t 0.016 0.016 0.016 0.015 0.015 0.016 0.016
Laplace  0.017 0.017 0.017  0.017 0.017 0.017 0.017
PVE=0.5
I 0.031 0.030 0.030  0.030 0.030 0.031  0.031
II 0.024 0.028 0.026  0.028 0.028 0.027  0.031
nr 10 0.029 0.026 0.027  0.027 0.027 0.031  0.028
100 0.031 0.031 0.031  0.030 0.030 0.031 0.031

1,000 0.031 0.031 0.031  0.030 0.030 0.031  0.031
IV normal 0.030 0.030 0.031  0.030 0.031 0.030  0.030

t 0.025 0.025 0.025  0.027 0.026 0.025  0.025
Laplace  0.023 0.023 0.023  0.024 0.024 0.024  0.024
PVE =0.8
I 0.027 0.029 0.029  0.028 0.028 0.029  0.029
II 0.028 0.022 0.022  0.022 0.022 0.022  0.024
nr 10 0.022 0.024 0.022  0.023 0.023 0.024  0.024
100 0.032 0.028 0.027  0.026 0.026 0.028  0.027

1,000 0.035 0.030 0.030  0.030 0.030 0.030  0.030
IV normal 0.030 0.028 0.028  0.028 0.028 0.028  0.028

t 0.027 0.027 0.026 0.027 0.027 0.027 0.027
Laplace  0.024 0.022 0.022 0.022 0.022 0.022 0.022
Real data
Cattle
MFP 0.013 0.012 0.011 0.013 0.030 0.018 0.011
MY 0.015 0.013 0.012 0.013 0.013 0.014 0.012
SCS 0.019 0.020 0.018 0.018 0.016 0.022 0.017
Maize

GDD 0.013 0.011 0.012  0.010 0.014 0.013  0.012
FHS
LDL 0.013 0.013 0.032 0.014 0.033 0.014 0.012
GLU 0.010 0.010 0.022  0.015 0.022 0.016 0.012
HDL 0.010 0.021 0.029  0.015 0.067 0.018 0.019
TC 0.011 0.014 0.019  0.009 0.020 0.016 0.015
TG 0.008 0.014 0.018  0.020 0.022 0.011 0.014
Height 0.032 0.047 0.051  0.045 0.048 0.050  0.050
Weight  0.037 0.042 0.040  0.029 0.040 0.042  0.040
BMI 0.034 0.038 0.036  0.035 0.036 0.041  0.039

613
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614

Supplementary Table 2. Significant genes identified by DPR.MCMC for different

615  diseases in the PrediXcan gene set analysis of WTCCC.
Disease Gene Chr TSS zscore pvalue #SNPs h*  References
TID  LINC00240™Y 6 26,988,232 573 9.78E-09 277 0.255 28
TID  ZNFI65MY 6 28,048,753 7.40 1.40E-13 396 0231 28
TID  ZNF192MV 6 28,109,716 6.80 1.04E-11 387 0.041 28
TID  TRIM3™Y 6 30,080,883 -6.77 130E-11 13 0.089 28,29
TID HCGIS8™ 6 30,294,927 -542 5.85E-08 9  0.468 29-33
TID  [ER3™Y 6 30,712,331 -7.07 1.60E-12 35  0.405 29-33
TID  DDRI™Y 6 30,844,198 -7.31 2.76E-13 24 0217 29-33
TID  VARS2'™Y 6 30,876,019 -505 434E-07 16  0.195 29-33
TID MUC22™Y 6 30978251 5.85 5.05E-09 148 0.155 29-33
TID HCG22™Y 6 31,021,227 -4.54 555E-06 177 0.719 29-33
TID  HLA-B™Y 6 31,324,965 474 2.12E-06 153  0.579 29-33
TID  MiIcA™Y 6 31,367,561 4.81 1.50E-06 114 0.157 29-33
TID MICB™Y 6 31,462,658 445 859E-06 66  0.620 29-33
TID  LSTI™™Y 6 31,553,901 14.49 1.46E-47 42 0377 29-33
TID  AGPATI™Y 6 32,145,873 -9.50 2.04E-21 13 0.046 29-33
TID  HLA-DRB5™ 6 32498064 -5.04 4.70E-07 28  0.741 29-33
TID  HLA-DQA2S 6 32,709,119 18.85 2.99E-79 103 0.709 33
TID HLA-DOB2"™Y 6 32,731,311 10.78 4.15E-27 119 0.778 33
TID 74PV 6 32,806,599 -443 9.45E-06 111 0.815 33
TID PSMBY™Y 6 32,811,913 471 244E-06 120 0205 33
TID  T74PI™Y 6 32,821,755 8.60 7.70E-18 113  0.066 33
TID HLA-DOA™ 6 32977389 -7.36 1.88E-13 55 0.152 33
TID  HLA-DPAI™ 6 33,048,552 6.80 1.04E-11 73  0.423 33,34
TID HSD17B8™Y 6 33,172,419 799 1.40E-15 46  0.194 33,34
TID  RPS26° 12 56,435,637 593 297E-09 74  0.805 31
CD  POUSFI™Y 6 31,148,508 423 235E-05 260 0.526 31,35-39
CD  LINCO0481'"™Y 6 31,169,695 447 7.70E-06 256 0.281 31,35-39
CD  PTGER4° 5 40,679,600 5.31 1.11E-07 292 0.182 40
CD  AC091132.3Y 17 43595264 448 740E-06 24  0.557 353741
CD  PTPN2¢ 18 12,884,337 -5.01 5.58E-07 194 0.260 31,37,40,41
CD  STMN3Y 20 62,284,780 -443 938E-06 96 0277 37
RA  PANK4" 1 2458039 439 1.13E-05 64 0.126 42-44
RA  HLA-G® 6 29,794,744 454 557E-06 64 0459 43,45-57
RA  TRIM26" 6 30,181,204 -585 4.80E-09 12  0.044 45
RA  [ER3Y 6 30,712,331 -523 1.72E-07 35 0405 43,45-57
RA  HLA-DRB5" 6 32498064 -6.84 8.11E-12 28  0.741 43,45-57
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RA  HLA-DQA2C 6 32,709,119 951 1.82E-21 103  0.709 52,58
RA  HLA-DQOB2Y 6 32,731,311 938 6.88E-21 119 0.778 43,45-57

616  The table also lists the disease name, gene id, chromosome number, transcription start
617  site (TSS), association strength (z score, p value), the number of SNPs in each gene set
618 test, estimated SNP heritability (4°, from GEMMA), and references that support the
619  identified association. TID: type 1 diabetes, CD: Crohn's disease, RA: rheumatoid
620  arthritis. H indicates Human leukocyte antigen (HLA) region genes on chromosome 6, M
621 indicates major histocompatibility complex (MHC) region, G indicates genes previously
622  identified to be associated with diseases in the NHGRI GWAS catalog, V indicates the
623  vicinity of a reported gene. A* is the estimator of heritability using linear mixed models in

624 GEMMA.
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