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Supplemental Note

Technical Details about bfGWAS

1 Bayesian Hierarchical Model

1.1 Standard Bayesian Variable Selection Regression Model

Consider the following standard Bayesian variable selection regression (BVSR) model

yn×1 = Xn×pβp×1 + εn×1, βi ∼ πiN(0, τ−1σ2
i ) + (1− πi)δ0(βi), εi ∼ N(0, τ−1), (1)

where yn×1 denotes the centered phenotype vector of n samples; Xn×p denotes the
centered genotype matrix of p genetic variants; εi denotes the residual error independently
and identically distributed (i.i.d.) with normal distribution N(0, τ−1); and βi follows a
spike-and-slab prior distribution [5, 6, 7] — that is, βi follows the normal distribution
N(0, τ−1σ2

i ) with probability πi and the point-mass density function δ0(·) at 0 with
probability (1− πi) (δ0(βi) = 1 if βi = 0, otherwise δ0(βi) = 0).

Here, the genotype matrix contains either dosage data within range [0, 2] or genotype
data with values {0, 1, 2} denoting the number of minor alleles. The assumption of the
spike-and-slab prior for βi enforces variable selection in the regression model (1). We
drop the intercept term here for assuming both yn×1 and columns of Xn×p are centered.
Although this model is developed for quantitative trait, we can treat dichotomous traits
(e.g., cases and controls) as quantitative with values of 1 and 0 (e.g., 1 for cases and 0

for controls), which was proven to be equivalent as using the logistic or probit model by
previous approaches [6, 7].

1.2 Integrating Functional Information

In this paper, we only consider non-overlapped categorical annotations. Let Ai =

(Ai1, · · · , AiQ)T denotes the vector of Q annotations for the ith variant, where Aiq takes
binary values (1/0) to denote whether the ith variant is of the qth annotation. In order to
integrate functional annotations into the standard BVSR model (1), we assume all variants



of annotation q have the same spike-and-slab prior with parameters (πq, σ
2
q ). We further

assume the following independent and conjugate hyper priors (Figure S 1(A)):

πq i.i.d. ∼ Beta(aq, bq), σ
2
q i.i.d. ∼ IG(k1, k2), τ ∼ G(k3, k4), (2)

where Beta(aq, bq) denotes a Beta distribution with positive shape parameters aq and bq,
IG(k1, k2) denotes an Inverse-Gamma distribution with shape parameter k1 and scale
parameter k2, and G(k3, k4) denotes a Gamma distribution with shape parameter k3

and scale parameter k4 (Figure S1(A)). Note that parameters (aq, bq) could be different
with respect to different annotations. This hierarchical BVSR model is equivalent to the
standard BVSR model when modeling no functional information (i.e., assuming the same
πq and σ2

q for all variants).
In order to adjust for the unbalance distribution of functional annotations among all

variants and encourage for a sparse model, we choose values for aq and bq such that the
mean of the Beta distribution aq

aq+bq
= 10−6 with (aq + bq) = mq =

∑p
i=1,j=q Aij (the total

number of variants of annotation q). Here, the mean 10−6 of Beta(aq, bq) helps enforce
a sparse initial model that is desired for controlling false positives (assuming one signal
per1M variants). We take k1 = k2 = k3 = k4 = 0.1 to induce non-informative priors on σ2

q

and τ . Thus, the posterior estimates of πq and σ2
q will mainly depend on the data likelihood.

However, when there are few association signals in the qth category, the posterior estimates
of πq and σ2

q ) will be set as their respective prior modes. Note that although the hyper
priors are assumed to be independent, the posterior distributions of πq and σ2

q are no
longer independent.

1.3 Latent Indicator Variable

To facilitate computation, we introduce a latent indicator vector γp×1 [5] into the model,
where each element γi ∈ {0, 1} indicates whether the corresponding ith effect βi equals to
0 with γi = 0 or follows the N(0, τ−1σ2

i ) distribution with γi = 1. Equivalently,

γi ∼ Bernoulli(πi), β−γ ∼ δ0(·), βγ ∼MVN|γ|(0, τ
−1Vγ),

where |γ| denotes the number of non-zero entries in γ; β−γ denotes the sub-vector of βp×1
corresponding to variants with γi = 0; βγ denotes the sub-vector of βp×1 corresponding to
the variants with {γj = 1; j = 1, · · · , |γ|}; and V|γ| is the corresponding sub-matrix (with
γj = 1) of Vp×p = diag(σ2

1, · · · , σ2
p).



1.4 Bayesian Inference

With the above Bayesian hierarchical model, the posterior joint distribution of
(β,γ,σ2,π, τ) is proportional to the product of likelihood and prior density functions,

P (β,γ,σ2,π, τ |y,X,A) ∝ P (y|X,β,γ, τ)P (β|A,π,σ2, τ)P (γ|π)P (π)P (σ2)P (τ), (3)

where π = (π1, . . . , πQ), σ2 = (σ2
1, . . . , σ

2
Q), and A is the p × Q annotation matrix with

binary values.
Now our goal is to make inference on the category-specific parameters (π,σ2)

and the variable-specific parameters (β, E[γ]) from their respective marginal posterior
distributions, conditioning on the data (y,X,A). The category-specific parameters (π,σ2)

denote the shared characteristics of variants with the same annotation, which are also
referred as enrichment parameters in this paper. Specifically, πq denotes the causality for
variants of annotation q, and σ2

q denotes the effect-size variance for associated variants
(with nonzero βj) of annotation q.

To make the Bayesian inference of our model applicable for genome-wide analysis, we
pair it with a novel Expectation-Maximization Markov chain Monte Carlo (EM-MCMC)
algorithm. Because of the block-wise linkage disequilibrium (LD) structure of human
genome, we can segment the genotype data X into K approximately independent blocks,
i.e., X = {X1,X2, · · · ,XK}, where each submatrix Xk has dimension n × pk (genotypes
of pk variants for n samples). Thus, we can write the likelihood function in (3) as a product
of a series likelihood functions for Xk,

P (y|X,β,γ, τ) =
K∏
k=1

Pk(y|Xk,βk,γk, τ), (4)

where (y|Xk,βk,γk, τ) ∼MVN|γk|(Xkβk, τ
−1I|γk|).

To avoid adjusting for the residual variance with respect to each genome-block, we
fix τ−1 as the phenotype variance. This assumption is reasonable because most genome-
blocks explain little phenotype variance in practice. Although fixing τ−1 as the phenotype
variance seems conservative for genome-blocks with true signals, our analysis showed that
it barely affect identifying true signals.

In the Expectation step (E-step), (βk, E[γk]) are estimated by implementing MCMC
per block, conditioning on the given values of (π,σ); in the Maximization step (M-step),
(π,σ) are updated, conditioning on genome-wide estimates of (β, E[γ]) from the E-step.
In general, ∼5 EM iterations will lead to convergent estimates of (π,σ), and the estimates
of (βk, E[γk]) from the last E-step will be used to identify association signals (details are
provided in Section 2; Figure S 1(B)).



1.4.1 Conditional Posterior Distribution for βk

Conditioning on the values of (π,σ2, τ), the posterior distribution for the variant-specific
parameters (βk,γk) of block k is

P (βk,γk|Xk,y,π,σ
2, τ) ∝ P (y|Xk,βk,γk, τ)P (βk|γk,σ2, τ)P (γk|π). (5)

Conditioning on the indicator vector γk, the effect-sizes associated with zero indicator
variables are 0, while the posterior distribution for β|γk| is given by

P (β|γk||X|γk|,y,γk,σ2, τ) ∝ Pk(y|X|γk|,β|γk|,γk, τ)P (β|γk||γk,σ2, τ)

∝ exp
{
− τ

2
(y −X|γk|β|γk|)T (y −X|γk|β|γk|)

}
exp

{
− τ

2
βT|γk|V

−1
|γk|β|γk|

}
∝ exp

{
− τ

2

(
βT|γk|X

T
|γk|X|γk|β|γk| − 2βT|γk|X|γk|y + βT|γk|V

−1
|γk|β|γk|

)}
∝ exp

{
− τ

2

(
βT|γk|(X

T
|γk|X|γk| + V

−1
|γk|)β|γk| − 2βT|γk|X

T
|γk|y

)}
. (6)

From (6), it is easy to see that

(β|γk||X|γk|,y,γk,σ2, τ) ∼

MVN|γk|

(
(XT
|γk|X|γk| + V

−1
|γk|)

−1XT
|γk|y, τ

−1(XT
|γk|X|γk| + V

−1
|γk|)

−1
)
. (7)

Here, the subscript |γk| indicates sub-matrices or sub-vectors corresponding to variants
with nonzero indicator variables, and V|γk| is a diagonal matrix with (V|γk|)jj = σ2

q if the
jth variant is of annotation q.

1.4.2 Conditional Posterior Distribution for γk

Because of the conditional conjugate prior for βk, we can easily integrate βk out from
the joint conditional posterior distribution (5) to obtain the marginal conditional posterior
distribution for γk,

P (γk|Xk,y,π,σ
2, τ) ∝

∫
βk

Pk(y|Xk,βk,γk, τ)P (βk|γk,σ2, τ)P (γk|π)dβk

∝ |Ω|γk||−1/2 exp
{τ

2
yTX|γk|V|γk|Ω

−1
|γk|X

T
|γk|y

}
P (γk|π), (8)

where Ω|γk| = V|γk|X
T
|γk|X|γk| + I|γk|.

2 EM-MCMC Algorithm

The steps of the EM-MCMC algorithm are as follows:



(i) Fix τ at the value of phenotype variance;

(ii) Set initial values for the category-specific parameters (π,σ2);

(iii) E-step: Conditioning on the most recent values of (π,σ2), estimate variant-specific
parameters (β, E[γ]) by implementing MCMC per block;

(iv) M-step: Conditioning on the genome-wide estimates of (β, E[γ]) from the previous
E-step, update (π,σ2) by their MAPs (maximum a posteriori estimates), maximizing
the expected log-posterior-likelihood functions [2];

(v) Repeat the EM-steps (iii) and (iv) for a few times until the MAPs of (π,σ2) converge.

2.1 Setup Initial Values

In this paper, we fix τ at the value of phenotype variance, equivalent to assuming no
phenotype variance explained by the genetic variants. This assumption is true for most
blocks and slightly conservative for blocks with true signals. However, our analysis showed
that this assumption barely affects identifying true signals. We take initial values πq =

1 × 10−6 to initial a sparse and conservative model, and σ2
q = 10 to start with a large

effect-size variance for all associated variants.

2.2 MCMC Sampling Scheme

The MCMC sampling is implemented per block for estimating (βk, E[γk]), conditioning on
category-specific parameters (π,σ2):

(i) First, sort all variants in the block by their base positions, perform single variant tests,
and rank variants based on their marginal association evidence (e.g., P-values) from
strong to weak.

(ii) Second, select an initial model with independent significant signals. We first include
the variant with the smallest P-value into the model (i.e., set the corresponding
indicator value as 1). Then, conditioning on the currently selected variant(s), select
the next most significant variant with P-value < 5 × 10−8. Stop selection when no
other independent genome-wide signal exists. Generally, most of the blocks with
∼10K variants will start with only one variant.

(iii) Third, repeat the MCMC sampling for a large number of iterations (e.g., 50K
iterations with 50K burnins), in which the Metropolis-Hastings algorithm is used



to draw posterior samples for γk based on (8). With indicator vector γ ′k and
corresponding effect-size vector β|γ′

k| from previous iteration, each MCMC iteration
is as follows:

(a) Randomly propose a new indicator vector γ ′′k by:

∗ Including an extra variant into the model with probability 1/3: generate a
rank r from a proposal distribution Pγk such that the variant with rank r

is not included in the current model (change the corresponding indicator
variable from 0 to 1). Here, Pγk is constructed as the mixture distribution
0.9∗Utop+0.1Urest, where Utop denotes the uniform distribution on top ranks
(1, . . . , tk) and Urest denotes the uniform distribution on the remain ranks
(tk+1, · · · , pk) (tk is an arbitrary number). That is, we assume a variant
whose P-value is ranked in the top association group will be proposed with
probability 0.9/(tk), while a variant in the remaining group will be proposed
with probability 0.1/(pk − tk). A rank will keep being proposed from Pγk
until the corresponding variant is absent in the current model. We take
tk = min(pk, 300) in our software.

∗ Deleting a variant from the current model with probability 1/3: randomly
delete a variant from the current model (change the corresponding
indicator variable from 1 to 0), i.e., each variant in the current model has
probability 1/|γ′k| to be deleted.

∗ Switching a variant in the current model with an un-included variant
in the neighborhood of the switch candidate (switch the corresponding
indicator variable values): randomly select a variant in the current model
as a switch candidate; propose a variant within its neighborhood from
the proposal distribution Pneib. In order to improve the MCMC mixing
property, we calibrate Pneib based on the conditional association evidence of
all un-included variants in the neighborhood, conditioning on all variants
in the current model except the switch candidate. For example, if
there are 20 un-included variants in the neighborhood with conditional
likelihood ratio test (LRT) statistic values {s1, · · · , s20}, we first subtract
the largest statistic value smax from all values, then take Pneib(sj) =

exp(sj − smax)/
∑20

b=1 exp(sb− smax) as the probability for the corresponding
jth variant to be proposed. The neighborhood size can be tuned by users
(we set the neighborhood window as 100 variants near the switch candidate
in our analyses).



(b) Conditioning on the indicator vector γ ′′k, the effect-size vector β|γ′′
k | is estimated

by its conditional posterior mean in (7).

(c) Calculate the Metropolis-Hastings acceptance ratio, and then decide whether to
accept or reject γ ′′k by the Metropolis-Hastings algorithm.

(iv) Finally, E[γkj] is estimated by ukj/M , where ukj is the number of times when the jth
variant in block k is included into the model and M is the total MCMC iterations.
Note that E[γkj] is also referred as the Bayesian posterior inclusion probability (PP),
evidence for the ith variant in block k to be an association signal. The Bayesian
estimate of the corresponding βkj is given by the posterior mean

∑ukj
l=1 βkjl/ukj, where

βkjl is the effect-size estimate for the jth variant (in block k) when it is included into
the model for the lth time.

Within the MCMC sampling, we also record the number of iterations Mactive when the
linear regression model includes at least one variant by the Metropolis-Hastings algorithm.
Then the proportion of such MCMC iterations Mactive/M gives us the regional posterior
inclusion probability (regional-PP) of the study block, which is the probability of existing
at least one signal in the block. Because variants in high LD and the same annotation
category have the same chance to be included into the linear model (splitting the posterior
probability for a single signal), the regional-PP is more appropriate than the single variant
Bayesian PP for claiming a risk locus.

2.3 EM Algorithm

In the EM algorithm, values of (π,σ2) are updated by their respective maximum a
posteriori estimates (MAPs), maximizing expected log-posterior-likelihood functions. With
the Bayesian estimates of (β, E[γ]) from the E-step, the expected log-posterior-likelihood
functions and MAPs can be derived with closed-form expressions.

2.3.1 MAP for σ2

From the joint posterior distribution (3), the conditional posterior density function
(posterior likelihood) of σ2 becomes

P (σ2|β,γ, τ) ∝ P (β|γ,σ2, τ)P (σ2), (9)

where P (σ2) =
∏Q

q=1 P (σ2
q ) with σ2

q ∼ IG(k1, k2), i.e. P (σ2
q ) ∝(

σ2
q

)−(k1+1)
exp

(
− k2
σ2
q

)
; P (β|γ,σ2, τ) =

∏p
i=1 P (βi|σ2

i , γi, τ) with P (βi|σ2
i , γi, τ) =



(γiN(βi; 0, τ−1σ2
i ) + (1− γi)δ0(βi)); and σ2

i = σ2
q if the ith variant is of annotation

q.
The expected log-posterior-likelihood of σ2 is given by

l(σ2) = Eγ
[
ln(P (σ2|β,γ, τ))

]
= Eγ

[
p∑
i=1

ln
(
P (βi|σ2

i , γi, τ)
)]

+

Q∑
q=1

ln
(
P (σ2

q )
)

+ C

=

p∑
i=1

Eγ
[
ln
(
P (βi|σ2

i , γi, τ)
)]

+

Q∑
q=1

ln
(
P (σ2

q )
)

+ C

≈
p∑
i=1

[
γ̂iln

(
P (βi|γi = 1, σ2

i )
)

+ (1− γ̂i)ln (P (βi|γi = 0))
]

+

Q∑
q=1

[
(k1 + 1)ln

(
1

σ2
q

)
− k2

1

σ2
q

]
+ C

=

p∑
i=1

[
γ̂i

(
1

2
ln

(
τ

σ2
i

)
− τ β̂i

2

2σ2
i

)]
+

Q∑
q=1

[
(k1 + 1)ln

(
1

σ2
q

)
− k2

1

σ2
q

]
+ C, (10)

where {γ̂i = E[γi]}, {β̂i} are Bayesian estimates by MCMC in the E-step, and C is a constant
free of σ2.

From (10), we can see that the posterior distributions of {σ2
q ; q = 1, . . . , Q} are disjoint,

because of independent priors and non-overlapped annotations. Thus, the expected log-
posterior-likelihood function for each σ2

q is

lσ2
q

=

mq∑
jq=1

[
γ̂jq

(
1

2
ln

(
τ

σ2
q

)
−
τ β̂jq

2

2σ2
q

)]
+ (k1 + 1)ln

(
1

σ2
q

)
− k2
σ2
q

+ C, (11)

where {γ̂jq , β̂jq ; jq = 1, . . . , nq} are the Bayesian estimates for variants of annotation q, and
mq is the total number of variants with annotation q. The MAP of σ2

q can be solved from

dlσ2
q

d(1/σ2
q )

=

mq∑
jq=1

[
γ̂jq

σ2
q

2
− γ̂jq

τβ2
jq

2

]
+ (k1 + 1)σ2

q − k2 = 0,

which is

σ̂2
q =

τ
∑mq

jq=1(γ̂jq β̂
2
jq

) + 2k2∑mq

jq=1 γ̂jq + 2(k1 + 1)
.



2.3.2 MAP for π

From the joint posterior distribution (3), the conditional posterior density function
(posterior likelihood) of π becomes

P (π|γ) ∝ P (γ|π)P (π), (12)

where P (γ|π) =
∏p

i=1 P (γi|πi) ∝
∏p

i=1 π
γi
i (1 − πi)

1−γi; πi = πq if the ith variant is of
annotation q; and P (π) =

∏Q
q=1 P (πq) with πq i.i.d. ∼ Beta(aq, bq).

The expected log-posterior-likelihood of π can be derived as

l(π) = Eγ [ln(P (π|γ))]

= Eγ

[
p∑
i=1

ln(P (γi|πi))

]
+ ln (P (π)) + C

=

p∑
i=1

Eγ [ln(P (γi|πi))] + ln (P (π)) + C

=

p∑
i=1

(Prob(γi = 1)ln(πi) + Prob(γi = 0)ln(1− πi)) +

Q∑
q=1

((aq − 1)ln(πq) + (bq − 1)ln(1− πq)) + C

≈
p∑
i=1

(γ̂iln(πi)) + (1− γ̂i)ln(1− πi)) +

Q∑
q=1

((aq − 1)ln(πq) + (bq − 1)ln(1− πq)) + C,

(13)

where {γ̂i = E[γi]} are estimated by MCMC, and C is a constant free of π.
Similarly, because the posterior distributions of {πq; q = 1, . . . , Q} are also disjoint, the

expected log-posterior-likelihood function for πq is given by

lπq =

mq∑
jq=1

[
γ̂jq ln(πq) + (1− γ̂jq)ln(1− πq)

]
+ (aq − 1)ln(πq) + (bq − 1)ln(1− πq) + C, (14)

and the MAP for πq is solved as

π̂q =

∑mq

jq=1 γ̂jq + aq − 1

mq + aq + bq − 2
.



3 Construct Confidence Intervals by Fisher Information

Fisher information of (π,σ2) can be derived from the second derivatives of the respective
expected log-posterior-likelihood functions as in (11) and (13). By the asymptotic-
normality of MAP, as n → ∞, the distribution of a MAP estimate θ̂ converges to a
multivariate normal (MVN) distribution with mean equal to the true parameter value θ0
and covariance matrix equal to the inverse of the Fisher information.

Therefore, the MAPs σ̂2 and π̂ are converging to the following MVN distributions as
n→∞,

σ̂2 −→MVN(σ2
∗, Iσ2(σ̂2)−1), π̂ −→MVN(π∗, Iπ(π̂)−1), (15)

where σ2
∗ and π∗ are the true parameter values; Iσ2(σ̂2) ≈ − ∂2l(σ2)

∂σ2(∂σ2)T
|
σ̂2; and

Iπ(π̂) ≈ − ∂2l(π)
∂π∂πT |π̂. Because of the mutual independence among {σ2

q , πq; q = 1, . . . , Q}
(conditioning on the estimates of β and E[γ]), the analytical forms for the second
derivatives of lσ2

q
, lπq are

dlσ2
q

d2σ2
q

=

mq∑
jq=1

(
γ̂jq

2(σ2)2
−
γ̂jqτ β̂jq

2

(σ2)3

)
+
k1 + 1

(σ2)2
− 2k2

(σ2)3
,

dlπq
d2πq

= −
∑mq

jq=1 γ̂jq + aq − 1

π2
q

−
nq −

∑mq

jq=1 γ̂jq + bq − 1

(1− πq)2
.

Then the Fisher informations of σ2
q , πq are given by

I(σ2
q ) =

1

(σ2
q )

2

 mq∑
jq=1

γ̂jq(τ − 0.5)− (k1 + 1) +
2k2
σ2
q

 ,

I(πq) =

∑mq

jq=1 γ̂jq + aq − 1

π2
q

+
nq −

∑mq

jq=1 γ̂jq + bq − 1

(1− πq)2
.

The (1− α)% confidence intervals of σ2
q , πq can be constructed by

σ̂2
q ± Zα/2

√
I(σ̂2

q )
−1, π̂q ± Zα/2

√
I(π̂q)−1, (16)

where Zα/2 is the upper α/2 quantile of the standard normal distribution N(0, 1).



4 Compare Enrichment among Multiple Groups

With the MAPs of (πq, σ
2
q ) and corresponding standard errors, we can easily compare the

enrichment among multiple groups. Take the case with two annotation groups for an
example, the 95% confidence intervals of the quantities ln(π1/π2), ln(σ2

1/σ
2
2) can be easily

approximated by Fieller’s theorem [3] (if variables a ∼ N(a0, σ
2
a), b ∼ N(b0, σ

2
b ), then

ln (a/b) ∼ N (ln (a0/b0) , σ
2
a/a

2
0 + σ2

b/b
2
0)), and then can be used to test whether or not the

enrichment is significantly different between two groups (i.e. whether or not the 95%
confidence intervals of ln(π1/π2), ln(σ2

1/σ
2
2) overlap 0). Moreover, with the approximated

variance of the log-ratio by Fieller’s theorem, we can calculate a P-value for the null
hypothesis that the log-ratio equals 0. For example, the P-value for testing the null
hypothesis ln(π1/π2) = 0 vs. the alternative hypothesis ln(π1/π2) 6= 0 can be calculated
by

2

(
1−Ψ

(
|ln(π̂1/π̂2)|
sd(ln(π1/π2))

))
,

where Ψ is the probability distribution function of N(0, 1), (π̂1, π̂2) are MAPs, and
sd(ln(π1/π2)) is the standard deviation of ln(π1/π2).

For the case with multiple annotation groups, we can calculate similar quantities to
compare the estimates by each group vs. the genome-wide average. That is, for causal
probability, ln(πq/πavg) is used to test whether or not the causal probability of group q is
significantly different from the overall average, where πavg =

∑Q
q=1wqπq, wq = mq∑Q

q=1mq
(mq

is the number of variants of annotation q). For the effect-size variance, a similar quantity
ln(σ2

q/σ
2
avg) is used, where σ2

avg =
∑Q

q=1 fqσ
2
q is the weighted average of effect-size variances

with weights given by fq = mqπq∑Q
q=1mqπq

(mqπq is the expected number of associations in

annotation category q). Again, the hypothesis tests for comparing enrichment among
multiple groups can be easily performed, because the approximated 95% confidence
intervals of these log-ratios can be easily obtained by Fieller’s theorem [3].

In addition, we can approximate the enrichment-fold π1/π2 by exp(ln(π1/π2)), and
σ2
1/σ

2
2 by and exp(ln(σ2

1/σ
2
2)).

5 Convergence Diagnosis

We used the potential scale reduction factor (PSRF) [4] to quantify the mixing property of
MCMC algorithms. With multiple MCMC chains, the PSRF for a parameter is basically the
ratio between the overall estimated parameter variance and the within-chain variance. A
PSRF value within (0.9, 1.2) suggests that the MCMC algorithm has good mixing property



and posterior samples converge. For example, in Figure S2, we present the PSRFs for
the E[γi] of top 58 variants with P-values < 5 × 10−8 in the WTCCC GWAS of Chrohn’s
disease [1]. We can see that about half of the 58 variants had PSRFs > 1.2 by the standard
MCMC algorithm as used in GEMMA [7], while all PSRFs by our MCMC algorithm all fall
within (0.9, 1.2), suggesting greatly improved mixing property due to the refined proposal
distribution and relatively small block-sizes.

6 Challenges for Extending bfGWAS for Overlapped and Quantitative

Annotations

Theoretically, this Bayesian hierarchical model can be easily extended for analyzing
overlapped categorical and quantitative annotations, by assuming the following logistic
model for the πi in model (1),

logit(πi) = α0 +AT
i α. (17)

In the logistic model (17), Ai is the quantitative annotation vector (with binary values
for categorical annotations) for the ith variant, and α = (α1, · · · , αQ) is the vector of log-
odds for all considered annotations. Independent normal distributions can be assumed
as the hyper priors for the category-specific (enrichment) parameters (α0,α). With a
large number of annotations, variable selection of annotations might even be integrated
by assuming independent point-normal priors for α.

Conditioning on values for (α0,α), the MCMC algorithm (Section 2.2) can be
implemented similarly per block in the E-step. However, in the M-step, analytical formulas
are no longer available for the posterior MAPs of (α0,α). In preliminary analysis, we
found that the false positive rate was inflated due to over estimated πi, which is due to
the difficulties of estimating (α0,α). We are still exploring an appropriate approach to
effectively control the false positive rate for this extension.

7 Software

Software implementing this Bayesian hierarchical model with the EM-MCMC algorithm,
referred as Bayesian Functional Genome-wide Association Study (bfGWAS), is now
available at GitHub (https://github.com/yjingj/bfGWAS). Within the software, the E-
step (MCMC algorithm) is written in C++ language; the M-step is written in an R script;
and both steps are wrapped together (enabling parallel computation) through submitting
jobs by a Makefile that is generated by a Perl script.



Supplemental Figures

Figure S 1: Flowcharts of bfGWAS.
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(A) Hierarchical Bayesian variable selection model; (B) EM-MCMC algorithm.



Figure S 2: Plots of the potential scale reduction factors (PSRF).
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Figure S 3: Prioritization ranks of the true causal SNP1 (pink) and SNP2 (cyan).
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Figure S 4: Estimates of the log-relative-risk ln(π0/π1) by bfGWAS and the enrich-parameter by
fGWAS, along with 95% confidence intervals.
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(B) Scenario (ii)
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Figure S 5: Estimates of the log-ratio of effect-size variances ln(σ20/σ
2
1) by bfGWAS, along with

95% confidence intervals.
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(A) Simulation scenario (i) with enrichment in coding; (B) Simulation scenario (ii) with
no enrichment. Note that the effect-sizes of both groups in scenarios (i) and (ii) were
simulated from the same normal distribution, thus the 95% confidence intervals covering
0 suggest that bfGWAS estimates similar effect-size variances between two categories.



Figure S 6: Sorted top bfGWAS PPs versus sorted top −log10(P-values) of single variant tests.
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Figure S 7: Manhattan plot highlighting AMD GWAS signals with BVSR PP > 0.1068.



Figure S 8: Manhattan plots highlighting AMD GWAS signals by accounting for gene-based
annotations.

(A)

(B)

(A) Highlighting signals with fGWAS posterior association probability (PP) > 0.1068 are
colored; (B) Highlighting signals with bfGWAS PP > 0.1068.



Figure S 9: LocusZoom plots of region CHR19:6218146-7218146.
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(A) P-values by single variant tests; (B) BVSR PPs; (C) fGWAS PPs; (D) bfGWAS PPs. The
purple triangle in (B, D) denotes the variant rs147859257; the blue triangle in (A, C)
denotes the top significant variant by single variant tests rs2230199.



Figure S 10: Enrichment analysis results with varying prior means as well as starting values
(10−6, 5× 10−6, 10−5) for πq, and varying starting values (10, 5, 1) for σ2q .
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Figure S 11: fGWAS enrichment estimates with 95% error bars.
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Figure S 12: Ratios of enrich parameters versus the respective genome-wide averages, along with
95% confidence intervals.
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Figure S 13: Enrichment analysis results for the AMD GWAS data with chromatin states profiled 
with respect to the epigenome of fetal thymus (E093).
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Figure S 14: Manhattan plot highlighting MGI GWAS signals of skin cancer with BVSR PP > 0.1068.



Figure S 15: Manhattan plots highlighting MGI GWAS signals of skin cancer by accounting 
for gene-based annotations.

(A)

(B)

(A) Highlighting signals with with fGWAS PP > 0.1068; (B) Highlighting signals with
bfGWAS PP > 0.1068. Variants with PP > 0.1068 are plotted in different shapes with
respect to gene-based annotations.



Figure S 16: Enrichment analysis results of the MGI GWAS of skin cancer, accounting for gene-
based annotations.
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Figure S 17: LocusZoom plots in the region of CHR16:89686117-90172696.
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(A) P-values by single variant tests; (B) BVSR PPs; (C) fGWAS PPs; (D) bfGWAS PPs. The
purple triangle denotes the variant rs1805007.



 

Supplemental Tables 
 
Table S1: Classification of gene-based functional annotations. 

Native gene-based functional annotations 
Annotation categories considered 

in the analysis 

frameshift, frameshift-near-splice 

Non-synonymous 

splice-acceptor, splice-donor, 

stop-gained, stop-gained-near-splice, stop-lost 

missense, missense-near-splice 

synonymous-near-splice, non-coding-exon-near-splice, 

coding-near-splice, coding-unknown-near-splice, intron-near-splice 

coding, coding-unknown, synonymous, nc-transcript-variant Coding-synonymous 

intronic Intronic 

intergenic, NAs Intergenic 

3-prime-UTR, 5-prime-UTR, 
Other-genomic 

downstream-gene, upstream-gene, non-coding-exon 

 

  



 

Table S2: Compare results by P-value, fGWAS, and bfGWAS in the 34 known AMD loci, accounting for gene-based annotations.  
 

Known 34 Loci  
 Top significant variant by P-value  Bayesian 

Regional-PP 
fGWAS 

Regional-PP 

Locus name Chr Start End dbSNPID Chr:Position MAF P-value Anno   

CFH 1 195,679,832 197,768,053 rs10922109 1:196,704,632 0.329 <9×10!!"# intronic 1.000 1.000 
 

COL4A3 2 227,573,015 228,592,110 rs11884770 2:228,086,920 0.731 5.6×10!! intronic 0.984 0.986 

ADAMTS9-AS 3 64,199,445 65,230,121 rs62247658 3:64,715,155 0.551 1.4×10!!" intronic 0.978 1.000 

COL8A1 3 98,551,114 100,381,567 rs140647181 3:99,180,668 0.019 5.4×10!!" intergenic 1.000 0.999 

CFI 4 110,126,506 111,185,820 rs10033900 4:110,659,067 0.506 7.1×10!!" downstream 1.000 1.000 

C9 5 38,699,134 39,831,894 rs62358361 5:39,327,888 0.012 3.1×10!!" intronic 1.000 1.000 

PRLR/SPEF2 5 34,769,332 36,493,378 rs114092250 5:35,494,448 0.018 2.5×10!! intergenic 0.961 0.987 

C2/CFB/SKIV2L 6 30,505,490 33,238,589 rs116503776 6:31,930,462 0.120 2.1×10!!!" intronic 1.000 1.000 

VEGFA 6 43,305,296 44,329,629 rs943080 6:43,826,627 0.518 2.0×10!!" intergenic 1.000 1.000 

KMT2E/SRPK2 7 104,081,402 105,563,372 rs1142 7:104,756,326 0.357 1.5×10!!" downstream 0.999 0.999 

PILRB/PILRA 7 99,394,940 100,611,776 rs7803454 7:99,991,548 0.199 3.6×10!!" intronic 0.999 0.999 

TNFRSF10B 8 22,582,971 23,588,984 rs79037040 8:23,080,971 0.534 2.9×10!!" nc-transcript 1.000 0.999 

MIR6130/RORB 9 75,935,160 77,189,752 rs10781180 9:76,615,662 0.683 3.0×10!!" intergenic 0.997 0.999 

TRPM3 9 72,938,605 73,946,180 rs7150714 9:73,438,605 0.584 3.2×10!! intronic 0.929 0.999 

TGFBR1 9 101,358,102 102,431,769 rs1626340 9:101,923,372 0.199 2.3×10!!! intergenic 1.000 0.999 

ABCA1 9 107,139,414 108,167,147 rs2740488 9:107,661,742 0.265 1.7×10!! intronic 0.963 0.985 

ARHGAP21 10 24,360,361 25,556,538 rs12357257 10:24,999,593 0.232 4.3×10!! intronic 0.962 0.986 

ARMS2/HTRA1 10 123,702,126 124,735,355 rs3750846 10:124,215,565 0.316 <9×10!!"# intronic 1.000 1.000 

RDH5/CD63 12 55,615,585 56,713,297 rs3138141 12:56,115,778 0.214 4.7×10!!" intronic 0.034 0.999 

ACAD10 12 110,919,995 113,502,935 rs73205633 12:112,357,085 0.019 1.2×10!!" intergenic 0.997 0.999 



 

Known 34 Loci  
 Top significant variant by P-value  Bayesian 

Regional-PP 
fGWAS 

Regional-PP 

Locus name Chr Start End dbSNPID Chr:Position MAF P-value Anno   

B3GALTL 13 31,242,232 32,339,274 rs9564692 13:31,821,240 0.288 3.2×10!!! splice 1.000 0.999 

RAD51B 14 68,227,506 69,550,783 rs1956526 14:68,799,787 0.650 1. .0×10!!! intronic 1.000 0.999 

LIPC 15 58,171,721 59,242,418 rs2414577 15:58,680,638 0.365 4.8×10!!" nc-transcript 1.000 1.000 

CETP 16 56,485,514 57,506,829 rs5817082 16:56,997,349 0.248 1.7×10!!" intronic 1.000 1.000 

CTRB2/CTRB1 16 74,732,528 76,017,115 rs72802342 16:75,234,872 0.073 2.8×10!!" downstream 1.000 1.000 

TMEM97/VTN 17 26,092,946 27,240,139 rs11080055 17:26,649,724 0.524 1.5×10!! intronic 0.996 0.998 

NPLOC4/TSPAN10 17 79,015,509 80,186,552 rs6565597 17:79,526,821 0.390 1.0×10!!" intronic 1.000 0.999 

C3 19 5,311,717 7,224,340 rs2230199 19:6,718,387 0.764 1.7×10!!! missense 1.000 1.000 

CNN2 19 523,867 1,533,360 rs10422209 19:1,026,318 0.132 5.5×10!! upstream 0.970 0.993 

APOE 19 44,892,254 46,313,830 rs429358 19:45,411,941 0.118 3.3×10!!" missense 1.000 1.000 

MMP9 20 44,114,991 45,160,699 rs142450006 20:44,614,991 0.132 1.4×10!!! intergenic 1.000 0.999 

C20orf85 20 56,084,276 57,174,034 rs117739907 20:56,652,781 0.062 7.8×10!!" intergenic 1.000 1.000 

SYN3/TIMP3 22 32,546,536 33,613,375 rs5754227 22:33,105,817 0.123 2.0×10!!" intronic 1.000 1.000 

SLC16A8 22 37,795,271 39,003,972 rs8135665 22:38,476,276 0.205 2.9×10!!" intronic 1.000 0.999 

 

  



Table S3: AMD risk variants identified by bfGWAS in the 34 known loci, accounting for gene-based annotations. 

Signal 
number Reside/Nearby Gene dbSNPID Chr:Position Anno MAF bfGWAS 

PP 
Effect-
size P-value 

1.1 CFH rs800292 1:196,642,233 missense 0.183 0.997 -0.312 2.4×10!!"#
1.2 CFH rs10922094 1:196,661,505 intronic 0.530 1.000 -0.214 < 9.0×10!!"#
1.3 CFHR1 rs605082 1:196,801,917 downstream 0.353 0.518 -0.092 7.5×10!!"#
1.4 CFHR4 rs58175074 1:196,820,080 intronic 0.158 0.792 -0.314 < 9.0×10!!"#
1.5 CFHR4 rs149032610 1:196,857,150 5’-UTR 0.015 1.000  0.195 6.6×10!!"
1.6 CFHR4 rs10494745 1:196,887,457 missense 0.134 0.526  0.092 7.4×10!!"#
1.7 CFHR2 rs138579109 1:196,923,955 intronic 0.043 0.893  0.167 8.4×10!!"
1.8 CFHR5 rs35662416 1:196,967,354 missense 0.022 0.889 -0.122 5.8×10!!
2 COL4A3 rs11884770 2:228,086,920 intronic 0.731 0.269  0.052 5.6×10!!
3 ADAMTS9-AS2 rs7428936 3:64,710,850 intronic 0.448 0.167 -0.061 1.5×10!!"
4 COL8A1 rs140647181 3:99,180,668 intergenic 0.019 0.687  0.224 54×10!!"
5 CFI rs10033900 4:110,659,067 downstream 0.506 0.999 -0.067 7.2×10!!"
6 C9 rs34882957 5:39,331,894 missense 0.012 0.998  0.278 4.0×10!!"
7 PRLR/SPEF2 rs114092250 5:35,494,448 intergenic 0.019 0.403 -0.174 2.5×10!!
8.1 C2/CFB rs4151667 6:31,914,024 missense 0.036 0.917 -0.279 1.4×10!!!
8.2 SKIV2L/NELFE rs115270436 6:31,928,306 missense 0.071 0.633 -0.321 2.8×10!!!
8.3 HLA-DQB1 rs3891176 6:32,634,318 missense 0.159 0.726  0.153 1.2×10!!!
9 VEGFA rs943080 6:43,826,627 intergenic 0.518 0.435  0.063 2.0×10!!"
10 KMT2E/SRPK2 rs1142 7:104,756,326 downstream 0.357 0.125 0.052 1.5×10!!"
11 PILRB rs35986051 7:99,956,439 missense 0.139 0.193  0.075 4.0×10!!"
12 TNFRSF10A rs79037040 8:23,082,971 nc-transcript 0.534 0.996  0.053 2.9×10!!"
13 MIR6130/RORB rs10781182 9:76,617,720 intergenic 0.684 0.070 -0.052 3.0×10!!"
14 TRPM3 rs71507014 9:73,438,605 intronic 0.584 0.822 -0.046 3.2×10!!
15 TGFBR1 rs10819635 9:101,864,510 upstream 0.186 0.137 -0.066 2.4×10!!!
16 ABCA1 rs2740488 9:107,661,742 intronic 0.266 0.756 -0.053 1.7×10!!
17 ARHGAP21 rs12357257 10:24,999,593 intronic 0.232 0.318  0.053 4.3×10!!
18 ARMS2 rs10490924 10:124,214,448 missense 0.316 0.996  0.474 < 9.0×10!!"#
19 RDH5/CD63 rs3138142 12:56,115,585 coding-syn 0.213 0.706  0.074 6.1×10!!"
20 MAPKAPK5 rs61941287 12:112,330,305 intronic 0.019 0.309 0.191 1.2×10!!"
21 B3GLCT rs9564692 13:31,821,240 splice 0.288 0.942 -0.056 3.2×10!!!
22 RAD51B rs2842339 14:68,986,999 intronic 0.899 0.243 -0.082 3.1×10!!
23 ALDH1A2 rs2414577 15:58,680,638 intronic 0.366 0.501 -0.067 4.8×10!!"
24 CETP rs1532625 16:57,005,301 splice 0.448 0.358  0.044 7.9×10!!"
25 CTRB2 rs72802342 16:75,234,872 downstream 0.360 0.297 -0.114 2.8×10!!"
26 CTB-96E2.2/VTN rs704 17:26,694,861 missense 0.483 0.325  0.042 3.3×10!!
27 NPLOC4/TSPAN10 rs6420484 17:79,612,397 missense 0.622 0.402 -0.055 4.0×10!!"
28.1 FUT6/NRTN rs17855739 19:5,831,840 missense 0.044 0.681 -0.159 1.5×10!!"
28.2 C3/CTD-3128G10.7 rs147859257 19:6,718,146 missense 0.008 1.000  0.501 4.3×10!!"
28.3 C3/CTD-3128G10.7 rs2230199 19:6,718,387 missense 0.764 1.000 -0.172 1.7×10!!!



Signal 
number Reside/Nearby Gene dbSNPID Chr:Position Anno MAF bfGWAS 

PP 
Effect-
size P-value 

29.1 ABCA7 rs3752237 19:1,047,161 coding-syn 0.644 0.544 -0.065 6.7×10!!
29.2 ABCA7 rs12151021 19:1,050,874 intronic 0.708 1.000  0.091 1.9×10!!

30 APOE/TOMM40/ 
CTB-129P6.7 rs429358 19:45,411,941 missense 0.118 1.000 -0.173 3.3×10!!"

31 MMP9/RP11-465L10.10 rs2274755 20:44,639,692 splice 0.138 0.435 -0.073 5.4×10!!!
32 C20orf85 rs201459901 20:56,653,724 intergenic 0.063 0.078 -0.135 7.9×10!!"
33 SYN3 rs5754227 22:33,105,817 intronic 0.124 0.764 -0.128 2.0×10!!"
34.1 SLC16A8/BAIAP2L2 rs4289289 22:38,477,342 missense 0.485 0.824  0.056 1.1×10!!"
34.2 SLC16A8/BAIAP2L2 rs77968014 22:38,478,666 splice 0.009 0.973  0.212 3.1×10!!

Variants with Bayesian PPs >0.5 or the highest bfGWAS PPs in the loci are listed. Shown are reside/nearby genes, dbSNPIDs, positions, functional 
annotations, MAFs (unfolded, corresponding to the direction of effect-sizes), P-values, and Bayesian PPs/effect-sizes. 



Table S4: AMD risk variants identified by fGWAS in the 34 known loci, accounting for gene-based annotations. 

Signal number Reside/Nearby Gene dbSNPID Chr:Position Anno MAF fGWAS PP P-value 
1 CFH rs10922109 1:196,704,632 intronic 0.329 0.802 < 9.0×10!!"#
2 COL4A3 rs11884770 2:228,086,920 intronic 0.731 0.181 5.7×10!!
3 ADAMTS9-AS2 rs62247658 3:64,715,155 intronic 0.551 0.167 1.5×10!!"
4 COL8A1 rs140647181 3:99,180,668 intergenic 0.019 0.999 5.4×10!!"
5 CFI rs10033900 4:110,659,067 downstream 0.506 0.996 7.2×10!!"
6 C9 rs34882957 5:39,331,894 missense 0.012 0.900 4.0×10!!"
7 PRLR/SPEF2 rs114092250 5:35,494,448 intergenic 0.019 0.626 2.5×10!!
8 NELFE/SKIV2L rs116503776 6:31,930,462 intronic 0.120 0.912 2.1×10!!!"
9 VEGFA rs943080 6:43,826,627 intergenic 0.518 0.437 2.0×10!!"
10 KMT2E/SRPK2 rs1142 7:104,756,326 downstream 0.357 0.182 1.5×10!!"
11 PILRB rs72615157 7:99,956,444 missense 0.139 0.118 4.0×10!!"
12 TNFRSF10A rs79037040 8:23,082,971 nc-transcript 0.534 0.996 2.9×10!!"
13 MIR6130/RORB rs10781180 9:76,615,662 intergenic 0.683 0.068 3.0×10!!"
14 TRPM3 rs71507014 9:73,438,605 intronic 0.584 0.860 3.2×10!!
15 TGFBR1 rs10819635 9:101,864,510 upstream 0.186 0.188 2.4×10!!!
16 ABCA1 rs2740488 9:107,661,742 intronic 0.266 0.760 1.7×10!!
17 ARHGAP21 rs12357257 10:24,999,593 intronic 0.232 0.280 4.3×10!!
18 ARMS2 rs10490924 10:124,214,448 missense 0.316 0.626 < 9.0×10!!"#
19 RDH5/CD63 rs3138142 12:56,115,585 coding-syn 0.213 0.847 6.1×10!!"
20 MAPKAPK5 rs61941287 12:112,330,305 intronic 0.019 0.503 1.2×10!!"
21 B3GALTL rs9564692 13:31,821,240 splice 0.288 0.889 3.2×10!!!

22 RAD51B rs1956526 14:68,799,787 intronic 0.650 0.039 1.0×10!!!
23 ALDH1A2 rs2414577 15:58,680,638 intronic 0.366 0.495 4.8×10!!"
24 CETP rs5817082 16:56,997,349 intronic 0.248 0.193 1.7×10!!"
25 BCAR1 rs72802395 16:75,286,484 intronic 0.068 0.605 2.1×10!!!
26 POLDIP2/TNFAIP1 rs13469 17:26,676,135 coding-syn 0.523 0.168 5.1×10!!
27 NPLOC4/TSPAN10 rs6420484 17:79,612,397 missense 0.622 0.351 4.0×10!!"
28 C3 rs2230199 19:6,718,387 missense 0.764 0.999 1.7×10!!!
29 CNN2 rs10422209 19:1,026,318 upstream 0.132 0.229 5.2×10!!
30 APOE/TOMM40 rs429358 19:45,411,941 missense 0.118 1.000 3.3×10!!"
31 MMP9 rs2274755 20:44,639,692 splice 0.138 0.194 5.4×10!!!
32 C20orf85 rs117739907 20:56,652,781 intergenic 0.063 0.079 7.8×10!!"
33 SYN3 rs5754227 22:33,105,817 intronic 0.124 0.781 2.0×10!!"
34 SLC16A8/PICK1 rs8135665 22:38,476,276 intronic 0.205 0.596 2.9×10!!"

Variants with fGWAS PPs >0.5 or the highest fGWAS PPs in the loci are listed in this table. Shown are reside/nearby genes, dbSNPIDs, positions, 
functional annotations, MAFs (unfolded), fGWAS PPs, and P-values. 



Table S5: Candidate AMD loci identified by bfGWAS, accounting for gene-based annotations. 

Locus Reside gene dbSNPID Chr:Position Anno MAF P-value Regional-PP bfGWAS PP Effect-size 
1 PPIL3 rs7562391 2:201,736,166 missense 0.127 4.8×10!! 0.989 0.666 -0.061 
2 ZNRD1ASP rs114318558 6:29,966,787 downstream 0.175 2.3×10!! 0.993 0.135  0.058 
3 CPN1 rs61751507 10:101,829,514 missense 0.043 6.7×10!! 0.994 0.598 -0.106 
4 ABHD2 rs6496562 15:89,736,558 splice 0.417 8.4×10!! 0.974 0.517  0.042 
5 LBP rs2232613 20:36,997,655 missense 0.073 4.3×10!! 0.955 0.881 -0.079 

Variants with the highest bfGWAS single variant PP in the candidate loci are listed in this table. Shown are reside genes, dbSNPIDs, positions, functional 
annotations, MAFs, P-values, Bayesian regional-PPs, and Bayesian PPs/effect-sizes. 

Table S6: Candidate AMD loci identified by fGWAS, accounting for gene-based annotations. 

Locus Reside gene dbSNPID Chr:Position   Anno MAF      P-value Regional-PP fGWAS PP Effect-size 
1 PPIL3 rs7562391 2:201,736,166 missense 0.127 4.8×10!! 0.986 0.475 -0.061 
2 HLA-K rs116803720 6:29,889,989 upstream 0.691 9.3×10!!" 0.998 0.101  0.056 
3 CPN1 rs61733667 10:101,802,262 coding-syn 0.036 1.0×10!! 0.994 0.254 -0.118 
4 ABHD2 rs6496562 15:89,736,558 splice 0.417 8.4×10!! 0.978 0.405  0.042 
5 LBP rs2232613 20:36,997,655 missense 0.073 4.3×10!! 0.973 0.796 -0.079 

Variants with the highest fGWAS single variant PP in the candidate loci are listed in this table. Shown are reside genes, dbSNPIDs, positions, functional 
annotations, MAFs, P-values, fGWAS regional-PPs, fGWAS PPs, and Bayesian effect-sizes 



Table S7: AMD risk variants by bfGWAS in the 34 known loci, accounting for summarized regulatory annotations. 

Signal 
number Reside/nearby gene dbSNPID Chr:Position Anno MAF bfGWAS 

PP 
Effect-size P-value 

1.1 KCNT2 rs144520124 1:196,371,908 DHS 0.005 1.000 -0.383 1.9×10!!"
1.2 CFH rs74979069 1:196,588,463 intergenic 0.049 1.000 0.181 8.1×10!!"
1.3 CFH rs1089033 1:196,666,793 intronic 0.412 1.000 -0.117 < 9.0×10!!"#
1.4 CFH rs2133143 1:196,718,099 intergenic 0.165 0.736 -0.358 5.7×10!!"#
1.5 CFH esv2672010 1:196,733,401 others 0.157 1.000 -0.283 3.3×10!!"#
1.6 CFHR3 rs188826801 1:196,762,123 intronic 0.014 0.993  0.176 1.2×10!!"
1.7 CFH rs79251424 1:196,782,416 intergenic 0.030 0.998 0.144 2.1×10!!
1.8 RP4-608O15.3 rs146093852 1:196,811,860 intergenic 0.277 0.994 -0.143 5.7×10!!"#
2 COL4A3 rs11884770 2:228,086,920 intronic 0.731 0.213  0.050 5.6×10!!
3 ADAMTS9-AS2 rs11914351 3:64,723,441 intronic 0.240 0.950 -0.064 8.7×10!!
4 COL8A1 rs140647181 3:99,180,668 intergenic 0.019 0.575  0.221 5.4×10!!"
5 CFI rs10033900 4:110,659,067 intergenic 0.506 0.994 -0.067 7.2×10!!"
6 C9 rs34882957 5:39,331,894 coding 0.012 0.982  0.278 4.0×10!!
7 PRLR/SPEF2 rs114092250 5:35,494,448 intergenic 0.019 0.346 -0.172 2.5×10!!
8.1 C2/CFB rs4151667 6:31,914,024 coding 0.035 0.579 -0.284 1.3×10!!!
8.2 SKIV2/NELFE rs115270436 6:31,928,306 coding 0.071 0.566 -0.321 2.8×10!!!
9 VEGFA rs943080 6:43,826,627 DHS 0.518 0.678  0.063 2.0×10!!"
10 LINC01004/KMT2E-AS1 rs6950894 7:104,652,671 promoter 0.511 0.063 -0.047 9.8×10!!"
11 PILRB rs7783159 7:100,017,454 coding 0.203 0.115 0.059 5.1×10!!"
12 TNFRSF10A rs79037040 8:23,082,971 DHS 0.534 0.995  0.053 2.9×10!!"
13 MIR6130/RORB rs10781180 9:76,615,662 intergenic 0.684 0.070 -0.052 3.0×10!!"
14 TRPM3 rs71507014 9:73,438,605 intronic 0.584 0.763 -0.046 3.2×10!!
15 TGFBR1 rs401186 9:101,925,077 promoter 0.200 0.109 -0.063 2.5×10!!!
16 ABCA1 rs2740488 9:107,661,742 intronic 0.266 0.727 -0.053 1.7×10!!
17 ARHGAP21 rs12357257 10:24,999,593 intronic 0.232 0.297  0.053 4.3×10!!
18.1 ARMS2 rs7068411 10:124,202,878 intergenic 0.621 1.000 0.252 2.4×10!!"!
18.2 ARMS2 rs7898343 10:124,212,887 promoter 0.083 0.868 -0.311 2.0×10!!"
18.3 ARMS2 rs10490923 10:124,214,251 coding 0.109 0.962 -0.272 1.7×10!!"
18.4 ARMS2 rs2736911 10:124,214,355 coding 0.137 0.781 -0.350 1.8×10!!"
18.5 HTRA1 rs2672601 10:124,220,023 promoter 0.136 0.524 -0.321 4.8×10!!"
18.6 HTRA1 rs74895474 10:124,230,397 intronic 0.094 1.000 -0.199 1.3×10!!"
18.7 HTRA1 rs12252027 10:124,234,988 intronic 0.099 1.000 -0.189 1.4×10!!"
18.8 HTRA1 rs2672589 10:124,234988 DHS 0.653 1.000 0.220 8.9×10!!"#
19 RDH5/CD63 rs143673140 12:56,514,414 coding 0.009 0.001 -0.096 1.3×10!!
20 MAPKAPK5 rs61941287 12:112,330,305 intronic 0.019 0.318  0.199 1.2×10!!"
21 B3GALTL rs9564692 13:31,821,240 DHS 0.288 0.429 -0.056 3.2×10!!!
22 RAD51B rs2842344 14:68,976,971 DHS 0.899 0.215 -0.082 3.7×10!!
23 ALDH1A2 rs2414577 15:58,680,638 DHS 0.366 0.508 -0.067 1.5×10!!
24 CETP rs5883 16:57,007,353 promoter 0.060 0.415 0.085 1.4×10!!"



Signal 
number Reside/nearby gene dbSNPID Chr:Position Anno MAF bfGWAS 

PP 
Effect-size P-value 

25 CTRB2 rs55993634 16:75,236,763 promoter 0.082 0.321 -0.104 4.6×10!!
26 POLDIP2/TNFAIP1 rs13469 17:26,676,135 coding 0.524 0.280  0.044 5.2×10!!
27 NPLOC4/TSPAN10 rs9894429 17:79,596,811 coding 0.441 0.261 -0.045 4.0×10!!"
28.1 FUT6/NRTN rs17855739 19:5,831,840 coding 0.044 0.549 -0.159 1.5×10!!"
28.2 C3/CTD-3128G10.7 rs147859257 19:6,718,146 coding 0.008 1.000  0.501 4.3×10!!"
28.3 C3/CTD-3128G10.7 rs2230199 19:6,718,387 coding 0.764 0.999 -0.173 1.7×10!!!
29 ABCA7 rs3752241 19:1,053,524 coding 0.160 0.268 0.055 3.2×10!!
30 APOE(EXOC3L2/MARK4) rs429358 19:45,411,941 coding 0.118 1.000 -0.173 3.3×10!!"
31 MMP9/RP11-465L10.10 rs17577 20:44,643,111 coding 0.138 0.377 -0.072 6.8×10!!!
32 RP13-379L11.1 rs7266392 20:56,651,542 DHS 0.063 0.115 -0.134 9.2×10!!"
33 SYN3 rs5754227 22:33,105,817 intronic 0.124 0.524 -0.129 2.0×10!!"
34 SLC16A8/BAIAP2L2 rs77968014 22:38,478,666 coding 0.009 0.842  0.207 3.1×10!!

Variants with Bayesian PPs >0.5 or the highest bfGWAS PPs in the loci are listed (horizontal lines separate loci). Shown are reside/nearby genes, 
dbSNPIDs, positions, functional annotations, MAFs (unfolded, corresponding to the direction of effect-sizes), Bayesian PPs/effect-sizes, and P-values. 



Table S8: AMD risk variants by fGWAS in the 34 known loci, accounting for summarized regulatory annotations. 

Signal number Reside/nearby gene dbSNPID Chr:Position Anno MAF fGWAS PP P-value 
1 CFH rs1089033 1:196,666,793 Intronic 0.412 0.522 < 9.0×10!!"#
2 COL4A3 rs112103000 2:228,072,336 intronic 0.163 0.135 2.0×10!!
3 ADAMTS9-AS2 rs6793431 3:64,729,510 intronic 0.891 0.001 6.4×10!!

4 Intergenic rs115407994 3:99,268,860 intergenic 0.018 0.367 9.4×10!!"
5 CFI rs10033900 4:110,659,067 intergenic 0.506 0.996 7.2×10!!"
6 C9 rs34882957 5:39,331,894 coding 0.012 0.757 4.0×10!!"
7 Intergenic rs114092250 5:35,494,448 intergenic 0.019 0.617 2.5×10!!
8 NELFE/SKIV2L rs116503776 6:31,930,462 intronic 0.120 0.789 2.1×10!!!"
9 Intergenic rs943080 6:43,826,627 DHS 0.518 0.557 2.0×10!!"
10 KMT2E/SRPK2 rs1142 7:104,756,326 UTR 0.357 0.215 1.5×10!!"
11 ZCWPW1 rs7783159 7:100,017,454 coding 0.203 0.047 5.1×10!!"
12 TNFRSF10A rs79037040 8:23,082,971 DHS 0.534 0.995 2.9×10!!"
13 Intergenic rs10781180 9:76,615,662 intergenic 0.683 0.067 3.0×10!!"
14 TRPM3 rs71507014 9:73,438,605 intronic 0.584 0.837 3.2×10!!
15 TGFBR1 rs10760667 9:101,864,607 DHS 0.105 0.186 2.5×10!!!
16 ABCA1 rs2740488 9:107,661,742 intronic 0.266 0.667 1.7×10!!
17 ARHGAP21 rs142336524 10:24,879,784 intronic 0.215 0.255 3.2×10!!
18 ATE1-AS1 rs11594070 10:123,702,736 nc-transcript 0.334 0.003 1.7×10!!
19 RDH5/CD63 rs3138136 12:56,117,570 intronic 0.098 0.001 3.9×10!!
20 MAPKAPK5 rs61941287 12:112,330,305 nc-transcript 0.019 0.153 1.2×10!!"
21 B3GALTL rs9564692 13:31,821,240 DHS 0.288 0.543 3.2×10!!!

22 RAD51B rs11158728 14:68,762,205 DHS 0.641 0.040 1.2×10!!!
23 ALDH1A2 rs2414577 15:58,680,638 DHS 0.366 0.500 4.8×10!!"
24 CETP rs7499892 16:57,006,590 intronic 0.169 0.182 5.3×10!!"
25 BCAR1 rs72802395 16:75,286,484 intronic 0.068 0.623 2.1×10!!!
26 POLDIP2/NFAIP1 rs13469 17:26,676,135 coding 0.523 0.134 5.1×10!!"
27 NPLOC4 rs8070929 17:79,530,993 intronic 0.378 0.176 1.1×10!!"
28 C3 rs2230199 19:6,718,387 coding 0.764 0.999 1.7×10!!!
29 CNN2/ABCA7 rs58369307 19:1,038,290 UTR 0.109 0.207 8.5×10!!
30 APOE/TOMM40 rs429358 19:45,411,941 coding 0.118 1.000 3.3×10!!"
31 MMP9 rs17577 20:44,643,111 coding 0.138 0.131 6.8×10!!!
32 RP13-379L11.1 rs141945849 20:56,650,604 DHS 0.063 0.092 9.3×10!!"
33 SYN3 rs5754227 22:33,105,817 intronic 0.124 0.681 2.0×10!!"
34 SLC16A8/PICK1 rs8135665 22:38,476,276 intronic 0.205 0.607 2.9×10!!"

Variants with fGWAS PPs >0.5 or the highest fGWAS PPs in the loci or are listed (horizontal lines separate loci). Shown are reside/nearby genes, 
dbSNPIDs, positions, annotations, MAFs (unfolded, corresponding to the direction of effect-sizes), fGWAS PPs, and P-values. 



Table S9: Candidate AMD loci identified by bfGWAS, accounting for summarized regulatory annotations. 

Locus Reside gene dbSNPID Chr:Position Anno MAF P-value Regional-PP bfGWAS PP Effect-size 
1 PPIL3 rs7562391 2:201,736,166 coding 0.127 𝟒.𝟖×𝟏𝟎!𝟕 0.967 0.475 -0.061 
2 ZNRD1-AS1 rs114357644 6:29,924,728 intergenic 0.669 𝟐.𝟑×𝟏𝟎!𝟕 0.999 0.609  0.051 
3 CPN1 rs61733667 10:101,829,514 coding 0.036 𝟏.𝟎×𝟏𝟎!𝟕 0.994 0.463 -0.118 

Variants with the highest bfGWAS PP in the candidate loci are listed in this table. Shown are reside genes, dbSNPIDs, positions, functional annotations, MAFs, P-
values, Bayesian regional-PPs, and Bayesian PPs/effect-sizes. 

Table S10: Candidate AMD loci identified by fGWAS, accounting for summarized regulatory annotations. 

Locus Reside gene dbSNPID Chr:Position   Anno MAF      P-value Regional-PP fGWAS PP Effect-size 
1 PPIL3 rs7562391 2:201,736,166 coding 0.127 𝟒.𝟖×𝟏𝟎!𝟕 0.976 0.322 -0.061 
2 Intergenic rs115754868 6:29,884,646 intergenic 0.653 𝟗.𝟔×𝟏𝟎!𝟏𝟎 0.998 0.101  0.053 
3 CPN1 rs61733667 10:101,802,262 coding 0.036 𝟏.𝟎×𝟏𝟎!𝟕 0.994 0.253 -0.118 
4 ABHD2 rs8042649 15:89,740,469 UTR 0.417 𝟏.𝟐×𝟏𝟎!𝟕 0.973 0.093  0.049 

Variants with the highest fGWAS PP in the candidate loci are listed in this table. Shown are reside genes, dbSNPIDs, positions, functional annotations, 
MAFs, P-values, fGWAS regional-PPs, fGWAS PPs, and Bayesian effect-sizes. 



Table S11: AMD risk variants by bfGWAS in the 34 known loci, accounting for chromatin states profiled with the epigenome of fetal thymus. 

Signal 
number Reside/nearby gene dbSNPID Chr:Position Anno MAF bfGWAS 

PP 
Effect-size P-value 

1.1 KCNT2 rs144520124 1:196,371,908 Quies 0.005 1.000 -0.389 𝟏.𝟗×𝟏𝟎!𝟐𝟑
1.2 KCNT2 rs10754198 1:196,573,505 Quies 0.258 1.000 -0.078 𝟏.𝟒×𝟏𝟎!𝟐𝟐𝟖
1.3 Intergenic rs74979069 1:196,588,463 Quies 0.049 1.000 0.160 𝟖.𝟏×𝟏𝟎!𝟗𝟐
1.4 CFH rs72734340 1:196,681,376 Quies 0.037 1.000 -0.189 𝟏.𝟏×𝟏𝟎!𝟏 
1.5 Intergenic rs200467660 1:196,721,770 Quies 0.161 1.000 -0.405 𝟏.𝟏×𝟏𝟎!𝟐𝟒𝟗
1.6 Intergenic rs113632891 1:196,731,186 Quies 0.155 1.000 -0.173 𝟐.𝟖×𝟏𝟎!𝟐𝟗𝟔
1.7 ZNF675 rs146093952 1:196,811,860 Quies 0.277 1.000 -0.207 𝟐.𝟐×𝟏𝟎!𝟑𝟏𝟎
1.8 CFHR4 rs76258418 1:196,815,863 Quies 0.130 1.000 -0.199 𝟐.𝟕×𝟏𝟎!𝟐𝟗𝟑
2 COL4A3 rs112103000 2:228,072,336 Quies 0.064 0.072  0.064 𝟐.𝟎×𝟏𝟎!𝟖
3.1 ADAMTS9-AS2 rs57305229 3:64,720,574 Quies 0.304 0.572 -0.057 𝟐.𝟑×𝟏𝟎!𝟓
3.2 ADAMTS9-AS2 rs11914351 3:64,723,441 Quies 0.240 0.968 -0.064 𝟖.𝟕×𝟏𝟎!𝟕
4 Intergenic rs140647181 3:99,180,668 Quies 0.019 0.703  0.222 𝟓.𝟑×𝟏𝟎!𝟏𝟑
5 CFI rs10033900 4:110,659,067 Quies 0.506 0.999 -0.067 𝟕.𝟐×𝟏𝟎!𝟏𝟗
6 C9 rs62358361 5:39,327,888 Quies 0.012 0.551  0.271 𝟑.𝟏×𝟏𝟎!𝟏𝟔
7 Intergenic rs114092250 5:35,494,448 Quies 0.019 0.213 -0.171 𝟐.𝟓×𝟏𝟎!𝟗
8.1 SKIV2L rs116503776 6:31,930,462 Tx 0.120 1.000 -0.307 𝟐.𝟏×𝟏𝟎!𝟏𝟏𝟒
8.2 STK19/C4A rs144629244 6:31,946,792 Enh 0.014 0.536 0.435 𝟒.𝟒×𝟏𝟎!𝟕
8.3 PBX2/AGER/GPSM3 rs114254831 6:32,155,581 EnhG 0.271 0.693 0.080 𝟖.𝟏×𝟏𝟎!𝟏𝟑
9 Intergenic rs943080 6:43,826,627 Quies 0.518 0.422  0.063 𝟐.𝟎×𝟏𝟎!𝟏𝟔
10 KMT2E/SRPK2 rs1142 7:104,756,326 Tx 0.357 0.197  0.051 𝟏.𝟓×𝟏𝟎!𝟏𝟎
11 NYAP1 rs67040465 7:100,083,078 ReprPCWk 0.200 0.040 0.059 𝟓.𝟕×𝟏𝟎!𝟏𝟎
12 TNFRSF10A rs79037040 8:23,082,971 BivFlnk 0.534 0.967  0.053 𝟐.𝟗×𝟏𝟎!𝟏𝟐
13 Intergenic rs10781180 9:76,615,662 Quies 0.684 0.090 -0.052 𝟑.𝟎×𝟏𝟎!𝟏𝟎
14 TRPM3 rs71507014 9:73,438,605 Quies 0.585 0.819 -0.046 𝟑.𝟐×𝟏𝟎!𝟗
15 TGFBR1 rs10819635 9:10,819,635 TxWk 0.186 0.084 -0.066 𝟐.𝟓×𝟏𝟎!𝟏𝟏
16 ABCA1 rs2740488 9:107,661,742 TxWk 0.266 0.759 -0.053 𝟏.𝟕×𝟏𝟎!𝟗
17 ARHGAP21 rs12357257 10:24,999,593 Quies 0.232 0.308  0.053 𝟒.𝟑×𝟏𝟎!𝟗
18.1 Intergenic rs7068411 10:124,202,878 Quies 0.621 1.000 0.198 𝟐.𝟒×𝟏𝟎!𝟐𝟏𝟐
18.2 HTRA1 rs2672595 10:124,227,288 ReprePCWk 0.213 0.844 -0.466 𝟖.𝟕×𝟏𝟎!𝟏𝟏𝟏
18.3 HTRA1 rs74895474 10:124,230,397 ReprePCWk 0.094 0.578 -0.181 𝟏.𝟑×𝟏𝟎!𝟒𝟐
18.4 HTRA1 rs4752699 10:124,234,320 ReprePCWk 0.128 1.000 -0.292 𝟐.𝟏×𝟏𝟎!𝟓𝟏
18.5 HTRA1 rs2672589 10:124,234,988 ReprePCWk 0.653 1.000 0.274 𝟖.𝟗×𝟏𝟎!𝟏𝟖𝟎
19 CDK2/PMEL rs2069389 12:56,359,642 Enh 0.044 0.001 0.042 𝟓.𝟑×𝟏𝟎!𝟐
20 CUX2 rs142641895 12:111,786,202 Het 0.019 0.635 0.249 𝟏.𝟔×𝟏𝟎!𝟗
21 B3GALTL rs9564692 13:31,821,240 Quies 0.288 0.411 -0.056 𝟑.𝟐×𝟏𝟎!𝟏𝟏
22 RAD51B rs2842339 14:68,986,999 TxWk 0.899 0.206 -0.082 𝟑.𝟏×𝟏𝟎!𝟕
23 ALDH1A2 rs2414577 15:58,680,638 Quies 0.366 0.525 -0.067 𝟒.𝟖×𝟏𝟎!𝟏𝟕
24 CETP rs11076175 16:57,006,378 TxWk 0.67 0.203 -0.072 𝟓.𝟎×𝟏𝟎!𝟐𝟏



Signal 
number Reside/nearby gene dbSNPID Chr:Position Anno MAF bfGWAS 

PP 
Effect-size P-value 

25 CTRB2 rs72802342 16:75,234,872 Enh 0.074 0.478 -0.114 𝟐.𝟖×𝟏𝟎!𝟏𝟑
26 SARM1/SLC46A1 rs4795433 17:26,716,821 ReprPCWk 0.524 0.138 0.045 𝟏.𝟔×𝟏𝟎!𝟗
27 NPLOC4 rs8070929 17:79,530,993 Tx 0.378 0.226 0.058 𝟏.𝟏×𝟏𝟎!!𝟐
28.1 FUT6 rs12019136 19:5,835,677 Quies 0.042 0.639 -0.160 𝟑.𝟕×𝟏𝟎!𝟏𝟕
28.2 C3 rs147859257 19:6,718,146 Het 0.008 1.000  0.504 𝟒.𝟑×𝟏𝟎!𝟑𝟏
28.3 C3 rs2230199 19:6,718,387 Het 0.764 0.996 -0.172 𝟏.𝟕×𝟏𝟎!𝟕𝟕
29 CNN2/ABCA7 rs3087680 19:1,038,289 TxFlnk 0.109 0.208  0.072 𝟖.𝟔×𝟏𝟎!𝟗
30 APOE/TOMM40 rs429358 19:45,411,941 ReprPCWk 0.118 1.000 -0.186 𝟑.𝟑×𝟏𝟎!𝟒𝟔
31 MMP9 rs142450006 20:44,614,991 ReprPCWk 0.132 0.251 -0.079 𝟏.𝟒×𝟏𝟎!𝟏𝟏
32 Intergenic rs140611615 20:56,653,111 Quies 0.062 0.080 -0.135 𝟖.𝟐×𝟏𝟎!𝟏𝟖
33 SYN3 rs5754227 22:33,105,817 Quies 0.124 0.896 -0.128 2.0×10!!"

34 SLC16A8/PICK1/ 
BAIAP2L2 rs8135665 22:38,476,276 ReprPC 0.206 0.624 0.066 2.9×10!!"

Variants with Bayesian PPs >0.5 or the highest bfGWAS PPs in the loci are listed in this table. Shown are reside/nearby genes, dbSNPIDs, positions, 
annotations, MAFs (unfolded, corresponding to the direction of effect-sizes), P-values, and Bayesian PPs/effect-sizes. 



Table S12: AMD risk variants by fGWAS in the 34 known loci, accounting for chromatin states profiled with the epigenome of fetal thymus. 

Signal number Reside/Nearby Gene dbSNPID Chr:Position Anno MAF fGWAS 
PP P-value 

1 CFH rs1089033 1:196,666,793 Quies 0.412 1.000 < 9.0×10!!"#
2 COL4A3 rs11884770 2:228,086,920 Quies 0.731 0.731 5.7×10!!
3 ADAMTS9-AS2 rs66793786 3:64,707,880 Quies 0.243 0.050 2.0×10!!
4 COL8A1 rs140647181 3:99,180,668 Quies 0.019 0.307 5.4×10!!"
5 CFI rs10033900 4:110,659,067 Quies 0.506 0.994 7.2×10!!"
6 C9 rs62358361 5:39,327,888 Quies 0.012 0.559 3.1×10!!"
7 PRLR/SPEF2 rs114092250 5:35,494,448 Quies 0.019 0.468 2.5×10!!
8 NELFE/SKIV2L rs116503776 6:31,930,462 Tx 0.120 0.967 2.1×10!!!"
9 VEGFA rs943080 6:43,826,627 Quies 0.518 0.437 2.0×10!!"
10 KMT2E/SRPK2 rs1142 7:104,756,326 Tx 0.357 0.141 1.5×10!!"
11 ZKSCAN1 rs2406255 7:100,053,690 EnhG 0.200 0.026 5.9×10!!"
12 TNFRSF10A rs79037040 8:23,082,971 BivFlnk 0.534 0.998 2.9×10!!"
13 Intergenic rs10781180 9:76,615,662 Quies 0.684 0.068 3.0×10!!"
14 TRPM3 rs71507014 9:73,438,605 Quies 0.584 0.776 3.2×10!!
15 TGFBR1 rs6478972 9:101,869,278 Enh 0.200 0.103 3.5×10!!!
16 ABCA1 rs2740488 9:107,661,742 TxWk 0.266 0.746 1.7×10!!
17 ARHGAP21 rs12357257 10:24,999,593 Quies 0.232 0.269 4.3×10!!
18 ARMS2 rs2672599 10:124,211,875 Quies 0.641 1.000 2.7×10!!"#
19 RDH5/CD63 rs3138136 12:56,117,570 EnhG 0.099 0.001 3.9×10!!
20 MAPKAPK5 rs61941287 12:112,330,305 Tx 0.019 0.205 1.2×10!!"
21 B3GALTL rs9564692 13:31,821,240 Quies 0.288 0.388 3.2×10!!!
22 RAD51B rs11158728 14:68,762,205 Enh 0.640 0.066 1.0×10!!!
23 ALDH1A2 rs2414577 15:58,680,638 Quies 0.366 0.495 4.8×10!!"
24 CETP rs5817082 16:56,997,349 TxWk 0.248 0.254 1.7×10!!"
25 CTRB2 rs72802342 16:75,234,872 Enh 0.073 0.656 2.8×10!!"
26 TNFAIP1/POLDIP2 rs733914 17:26,671,196 EnhG 0.526 0.156 3.5×10!!
27 NPLOC4 rs8070929 17:79,530,993 Tx 0.378 0.221 1.1×10!!"
28 C3 rs2230199 19:6,718,387 Het 0.764 0.992 1.7×10!!!
29 CNN2/ABCA7 rs58369307 19:1,038,290 TxFlnk 0.109 0.369 8.5×10!!
30 APOE/TOMM40 rs429358 19:45,411,941 ReprPCWk 0.118 1.000 3.3×10!!"
31 MMP9 rs1888235 20:44,623,967 Enh 0.133 0.281 1.4×10!!!
32 C20orf85 rs117739907 20:56,652,781 Quies 0.062 0.079 7.8×10!!"
33 SYN3 rs5754227 22:33,105,817 Quies 0.124 0.791 2.0×10!!"
34 SLC16A8/PICK1 rs8135665 22:38,476,276 ReprPC 0.205 0.773 2.9×10!!"

Variants with either the highest fGWAS PP per locus or fGWAS PP > 0.5 are listed (horizontal lines separate loci). Shown are reside/nearby genes, 
dbSNPIDs, positions, functional annotations, MAFs (unfolded, corresponding to the direction of effect-sizes), fGWAS PPs, and P-values. 



 

Table S13: Candidate AMD loci identified by bfGWAS, accounting for chromatin states profiled with the epigenome of fetal thymus.  
 

Locus Reside gene dbSNPID Chr:Position Anno MAF P-value Regional-PP bfGWAS PP Effect-size  
1 HLA-W rs114357644 6:29,924,728 TxWk 0.669 2.3×10!! 0.988 0.877  0.051  
2 CPN1 rs111563092 10:101,808,993 ReprPCWk 0.045 7.2×10!! 0.998 0.171 -0.106  

Variants with the highest bfGWAS PPs in the candidate loci are listed in this table. Shown are reside genes, dbSNPIDs, positions, functional annotations, MAFs, P-
values, Bayesian regional-PPs, and Bayesian PPs/effect-sizes. 
 
 
 
Table S14: Candidate AMD loci identified by fGWAS, accounting for chromatin states profiled with the epigenome of fetal thymus.  

Locus Reside gene dbSNPID Chr:Position   Anno MAF      P-value Regional-PP fGWAS PP Effect-size     1 PPIL3 rs7562391 2:201,736,166 Tx 0.127 6.5×10!! 0.969 0.088 -0.061  
2 Intergenic rs140766203 6:29,883,869 Quies 0.652 8.5×10!!" 0.998 0.044  0.053  
3 CPN1 rs113582392 10:101,804,258 Enh 0.045 1.4×10!! 0.993 0.154 -0.106  
4 ABHD2 rs4932480 15:89,723,858 EnhG 0.501 7.2×10!! 0.971 0.138 -0.043  

Variants with the highest fGWAS PPs in the candidate loci are listed in this table. Shown are reside genes, dbSNPIDs, positions, functional annotations, 
MAFs, P-values, fGWAS regional-PPs, fGWAS PPs, and Bayesian effect-sizes. 
 
 
 
  



 

Table S15: Haplotype analysis in locus C2/CFB/SKIV2L. 
 

Region Haplotype   Haplotype 
Frequency (%) 

 P-value OR (95% CI)   

 
SKIV2L intronic 
(rs116503776) 

CFB missense 
(rs4151667) 

CFB missense 
(rs115270436) 

Cases Controls     
C2/CFB/SKIV2L 1 1 1 1.5×10!! 4.2×10!! 8.9×10!!! 0.364 (0.265,  0.501)   
 1 0 1 0.046 0.085 1.5×10!!" 0.522 (0.490,  0.557)    1 1 0 0.023 0.041 5.0×10!!" 0.561 (0.513,  0.613)   
 0 0 1 8.9×10!! 1.5×10!! 0.024 0.586 (0.375,  0.917)   
 1 0 0 0.018 0.017 0.092 1.102 (0.983,  1.236)   
 0 0 0 0.909 0.850 - Reference Haplotype   
 0 1 0 6.1×10!! 2.8×10!! 0.306 1.840 (0.243, 13.938)   

Considered the haplotype consisting with the top significant intronic variant found by single variant test P-values  (rs116503776 with p-value=2.1×10!!!"), 
the top two significant missense variants (in the ±20KB region around rs116503776) found by bfGWAS (rs4151667 with Bayesian PP=0.903, 
rs115270436 with Bayesian PP= 0.638). 
 

 
 
Table S16: Model comparison.  

Region (C2/CFB/SKIV2L) SKIV2L intronic (rs116503776) & 
PBX2 intronic (rs114254831) 

CFB missense (rs4151667)  & 
SKIV2L missense (rs115270436) Differences (col2-col3) 

 
Akaike information criterion 

(AIC) 
95857.36 95752.63 104.73 

 
Bayesian information 

criterion (BIC) 
 

95891.1 95786.36 104.74 

Log Likelihood 
 -47924.68 -47872.31 -52.37 

Compared the linear regression model with the top two independent significant variants (rs116503776, rs114254831) found by conditional analysis, versus the 
linear regression model with the top two significant variants (rs4151667, rs115270436) found by bfGWAS accounting for gene-based annotations. 
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