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Abstract Primate evolution has been argued to result, in part, from changes in how genes are

regulated. However, we still know little about gene regulation in natural primate populations.

We conducted an RNA sequencing (RNA-seq)-based study of baboons from an intensively studied

wild population. We performed complementary expression quantitative trait locus (eQTL) mapping

and allele-specific expression analyses, discovering substantial evidence for, and surprising power to

detect, genetic effects on gene expression levels in the baboons. eQTL were most likely to be

identified for lineage-specific, rapidly evolving genes; interestingly, genes with eQTL significantly

overlapped between baboons and a comparable human eQTL data set. Our results suggest that

genes vary in their tolerance of genetic perturbation, and that this property may be conserved across

species. Further, they establish the feasibility of eQTL mapping using RNA-seq data alone, and

represent an important step towards understanding the genetic architecture of gene expression

in primates.

DOI: 10.7554/eLife.04729.001

Introduction
Gene regulatory variation has been shown to make fundamental contributions to phenotypic variation

in every species examined to date. This relationship has been demonstrated most clearly at the level

of gene expression, which captures the integrated output of a large suite of other regulatory

mechanisms. Variation in gene expression levels has been linked to fitness-related morphological,

physiological, and behavioral variation in both lab settings and natural populations (e.g., Abzhanov

et al., 2004; Hammock and Young, 2005; Tishkoff et al., 2006; Chan et al., 2010; reviewed inWray,

2007), and is a robust biomarker of disease in humans (e.g., Golub et al., 1999; Borovecki et al.,

2005). In addition, patterns of gene expression are often associated with signatures of natural

selection (Rifkin et al., 2003; Denver et al., 2005; Gilad et al., 2006a; Blekhman et al., 2008),

suggesting their functional importance even when their phenotypic significance remains unknown.

In primates, the majority of research on the evolution of gene expression has concentrated on cross

species comparisons, particularly using humans, chimpanzees, and rhesus macaques (Enard et al.,

2002; Cáceres et al., 2003; Khaitovich et al., 2004; Gilad et al., 2005, 2006b; Haygood et al.,

2007; Blekhman et al., 2008; Babbitt et al., 2010; Barreiro et al., 2010; Blekhman et al., 2010;

Brawand et al., 2011; Perry et al., 2012). These studies—motivated by a long-standing argument

about the importance of gene regulation in primate evolution (King and Wilson, 1975)—have been

important for identifying patterns of constraint on gene expression phenotypes over long evolutionary

time scales, and for suggesting candidate loci that might contribute to phenotypic uniqueness in

humans or other species. For example, gene expression patterns associated with neurological

development appear to have experienced an accelerated rate of change in primates relative to other
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mammals, with axonogenesis-related and cell adhesion-related genes accelerated specifically in the

human lineage (Brawand et al., 2011). Similarly, differentially expressed genes in human liver are

enriched for metabolic function (Blekhman et al., 2008), suggesting a potential molecular basis

for arguments implicating dietary shifts in the emergence of modern humans (Kaplan et al., 2000;

Ungar and Teaford, 2002; Wrangham, 2009).

Adaptively relevant changes in gene expression levels across species implicate selection on gene

expression phenotypes within species, and particularly within populations, the basic unit of

evolutionary change. However, in contrast to cross species comparisons, we still know little

about the genetic architecture of gene expression levels in natural nonhuman primate

populations. No estimates of the heritability of gene expression traits are available, even for

populations that have been intensively studied for many decades. We also do not know whether

segregating genetic variation that affects gene expression is common or rare, how the effect

sizes of such variants are distributed, or whether they carry a signature indicative of natural

selection. If gene regulatory variation has indeed been key to primate evolution, as classic

arguments suggest (King and Wilson, 1975), then large gaps therefore remain in our understanding

of this process.

Three primary reasons combine to account for the absence of such data. First, until relatively

recently, the only feasible approach for measuring genome-wide gene expression levels on a

population scale was microarray technology. This constraint limited the diversity of systems that could

eLife digest Our genes contain the instructions needed to make all aspects of the body. These

instructions can be changed by altering the sequence of the DNA that makes up the genes, which can

account for many of the different characteristics found in humans and other animals.

However, our characteristics can also be altered by changing how often the genes issue their

instructions, which is known as gene expression. For example, it is thought that changes in the

expression of some genes in primates may account for the expansion of brain sizes over evolutionary

time, particularly in the ancestors of modern humans. Most studies into gene expression in primates

have compared different species or focused on humans. It is less clear how many, and what type of,

genes vary in expression between individuals of the same species in other natural populations.

Here, Tung, Zhou et al. used a technique called RNA-sequencing to study gene expression in

a population of wild baboons that have been studied for over four decades by the Amboseli Baboon

Research Project in Kenya. This involved collecting blood samples from 63 individually recognized

adult baboons. After RNA-sequencing, Tung, Zhou et al. were able to identify specific sections of the

baboon genome where the DNA sequence an individual baboon carried could predict how highly

individual genes were expressed. These sections are known as ‘expression quantitative trait loci’ (or

eQTLs for short).

Tung, Zhou et al. found that there was a lot of genetically controlled variation in gene expression

across the 63 baboons. Most of the eQTLs were found to be in genes that are rapidly evolving or are

relatively new. There were fewer eQTLs in genes that are shared across a wide variety of species,

possibly because keeping the expression of these genes stable is important for processes that are

essential for life.

Many of the eQTLs found in the baboons were in genes where eQTLs are also found in humans.

This suggests that the set of genes where genetic variation affects gene expression in the baboons

may also be a similar set in humans.

Tung, Zhou et al. also examined how the age, sex, and social integration of the baboons affected

the variation in gene expression observed in the population. They found that for most genes, these

factors had only small effects on gene expression levels. However, for some genes, these factors

could affect the level of expression throughout the life of the individual.

These findings demonstrate that it is feasible to study gene expression patterns in wild

primates. The next challenge is to investigate how environmental and genetic factors combine

to influence gene expression, and the evolutionary impact of these effects for animals as

a whole.

DOI: 10.7554/eLife.04729.002
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be assessed because cost-effective, commercially available arrays have only been developed for

a handful of taxa. Second, genomic resources, especially detailed catalogs of known genetic variants

(e.g., 1000 Genomes Project Consortium et al., 2010, International HapMap Consortium, 2005),

are also limited to a small set of species. The lack of such resources creates major barriers to

genome-scale studies of the genetics of gene expression in other organisms, which rely on

complementary gene expression and genotype data. Finally, for many taxa, samples suitable for

gene expression profiling can be challenging to collect. In nonhuman primates, for example, RNA

samples are rarely available even for the most intensively studied natural populations.

Recently, sequencing-based methods for measuring gene expression levels (e.g., RNA-seq)

have eliminated the need for species-specific arrays. Comparative genomic studies using RNA-seq

have thus vastly expanded the set of taxa for which genome-wide expression data are available

(including primates: Brawand et al., 2011; Perry et al., 2012). Importantly, because fragments of

expressed genes are resequenced many times in RNA-seq studies, data on genetic variation are

also generated in the process. Although these data can be affected by technical biases, several

studies have demonstrated the generally high reliability of genotypes inferred from RNA-seq reads

(Perry et al., 2012; Piskol et al., 2013). Such data can provide important insight into genetic

diversity in species for which little other information exists (Perry et al., 2012). Additionally, they

provide the two ingredients necessary for mapping gene expression traits to genotype, at moderate

cost and without the requirement for previously ascertained genetic variants.

Here, we evaluate the potential for such work in an intensively studied wild primate population,

the baboons (Papio cynocephalus) of the Amboseli basin in Kenya. 43 years of prior research on

this population have established it as an important model for human social behavior, health, and

aging (Alberts and Altmann, 2012), and have facilitated the development of protocols for

collecting samples appropriate for gene expression analysis (Tung et al., 2009; Babbitt et al.,

2012; Runcie et al., 2013). We generated RNA-seq data for 63 individually recognized members of

the Amboseli study population. We used these data to explore the frequency, impact, and potential

selective relevance of variants associated with variation in gene expression levels, using comple-

mentary expression quantitative trait locus (eQTL) mapping and allele-specific expression (ASE)

approaches. We found evidence for abundant functional regulatory variation in the Amboseli

baboons, and a surprising amount of power to detect these variants even with a modest sample

size. We also found that functional variants are depleted in highly conserved genes, consistent with

constraint on gene expression patterns. However, among genes with eQTL, we did not find strong

support for a relationship between effect size and minor allele frequency. Such a relationship would

be consistent with pervasive negative selection on gene expression phenotypes (i.e., selection

against variants that produce large perturbations in gene expression levels) and has been suggested

by work in humans (Battle et al., 2014). Finally, we used our data set to provide the first estimates

of the heritability of gene expression levels in wild primates, including the relative contributions of

cis-acting and trans-acting genetic variation.

Results

Functional regulatory variation is common in the Amboseli baboons
We obtained blood samples from 63 individually recognized adult baboons in the Amboseli

population (Figure 1—figure supplement 1). From these samples, we produced a total of 1.89 billion

RNA-seq reads (mean of 30.0 ± 4.5 s.d. million reads per individual, with 8.6 ± 1.8 s.d. million reads

uniquely mapped to exons: Supplementary file 1A). On average, 67.2% of reads mapped to the most

recent release of the baboon genome (Panu2.0), 69.2% of which could be assigned to a unique

location. We used the set of uniquely mapped reads to estimate gene-wise gene expression levels for

NCBI-annotated baboon RefSeq genes. After subsequent read processing and normalization steps

(‘Materials and methods’, Figure 1—figure supplement 1 and Figure 1—figure supplement 2),

we considered variation in gene expression levels for 10,409 genes expressed in whole blood

(i.e., all genes for which we could test for cis-acting genetic effects on gene expression).

We also used the RNA-seq reads to identify segregating genetic variants in the Amboseli population.

We considered only high confidence sites that were variable within the Amboseli population

(‘Materials and methods’; Figure 1—figure supplement 3). As expected (Piskol et al., 2013), these

sites were highly enriched in annotated gene bodies (Figure 1; Figure 1—figure supplement 4).
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Based on parallel analyses applied to human

RNA-seq data, we estimated approximately

97% of these sites to be true positives, and

a median correlation between true genotypes

and inferred genotypes of 98.7% (‘Materials and

methods’; Figure 1—figure supplements 5–6).

To identify putative expression quantitative trait

loci (eQTL), we focused on variants that passed

quality control filters, within 200 kb of the gene

of interest. Such variants represent likely

cis-acting eQTL, which are more readily iden-

tifiable in small sample sizes than trans-eQTL.

To identify cases of allele-specific expression,

which provides independent but complemen-

tary evidence for functional cis-regulatory

variation, we focused on genes for which

multiple heterozygotes were identified for

variants in the exonic regions of expressed

genes. We also required a minimum total read

depth at exonic heterozygous sites of 300

reads (which should provide high power to

detect modest ASE: Fontanillas et al., 2010),

resulting in a total set of 2280 genes tested

for ASE.

Both analyses converged to reveal extensive

segregating genetic variation affecting gene

expression levels in the Amboseli population.

At a 10% false discovery rate, we identified eQTL

for 1787 (17.2%) of the genes we analyzed, and

evidence for ASE for 510 (23.4%) of tested genes.

Consistent with reports in humans (e.g., Veyrieras

et al., 2008; Pickrell et al., 2010a), eQTL were

strongly enriched near gene transcription start

sites and in gene bodies (Figure 1; controlling for

the background distribution of sites tested, which

were also enriched in and around genes). Within

gene bodies, eQTL were particularly likely to be

detected near transcription end sites; this poten-

tially reflects enrichment in 3′ untranslated

regions, which are poorly annotated in baboon.

Also as expected, genes with eQTL were

more likely to exhibit significant ASE and

vice-versa (hypergeometric test: p < 10−25;

Figure 1—figure supplement 7). The magni-

tude and direction of ASE and eQTL were

significantly correlated when an eQTL SNP

could also be assessed for ASE (n = 123 genes;

r = 0.719, p < 10−20, Figure 1—figure

supplement 7), and when ASE SNPs were

assessed as eQTL (n = 510 genes; r = 0.575,

p < 10−45, Figure 1—figure supplement 7).

Detection of ASE was most strongly favored

for highly expressed genes (i.e., higher RPKM:

Wilcoxon test: p < 10−208; Figure 1—figure

supplement 8), whereas detection of eQTL

was most strongly favored for genes with high

Figure 1. Baboon eQTLs are enriched in and near

genes. The locations of all SNPs tested in the eQTL

analysis are shown in gold relative to the 5′ most gene

transcription start site (TSS) and the 3′ most gene

transcription end site (TES) for all 10,409 genes. SNPs

detected as eQTL are overplotted in blue, and are

enriched, relative to all SNPs tested, near transcription

start sites, transcription end sites, and within gene

bodies. Gray shaded rectangle denotes the region

bounded by the TSS and TES, with gene lengths divided

into 20 bins for visibility (because the gene body is thus

artificially enlarged, SNP density within genes cannot

be directly compared with SNP density outside of

genes). Note that SNPs that fall outside of one focal

gene may fall within the boundaries of other genes.

Inset: distribution of all SNPs tested relative to the

location of genes, highlighting the concentration of

SNPs in genes (the peak at the center of the plot). See

Figure 1—figure supplements 1–14 for additional

details on workflow, variant calling validation, location of

all analyzed SNPs relative to genes, agreement between

eQTL and ASE detection, and effects of local structure.

DOI: 10.7554/eLife.04729.003

The following figure supplements are available for

figure 1:

Figure supplement 1. Detailed workflow for gene

expression level estimation.

DOI: 10.7554/eLife.04729.004

Figure supplement 2. Elimination of GC bias via

quantile normalization.

DOI: 10.7554/eLife.04729.005

Figure supplement 3. Detailed workflow for SNP

genotyping.

DOI: 10.7554/eLife.04729.006

Figure supplement 4. Location of analyzed SNPs

relative to genes.

DOI: 10.7554/eLife.04729.007

Figure supplement 5. Accuracy of genotype calls for

SNPs independently typed in HapMap3.

DOI: 10.7554/eLife.04729.008

Figure 1. continued on next page
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local SNP density (p < 10−72; Figure 1—figure

supplement 8).

Increased power to detect eQTL in
baboons relative to humans
The number and effect sizes of the eQTL we

detected indicate that our power to detect eQTL

in the Amboseli population was surprisingly high,

especially given that our genotyping data set

was limited only to those sites represented in

RNA-seq data (i.e., primarily within transcribed

regions of moderately to highly expressed

genes). Further, while thousands of cis-eQTL

have been mapped in single human populations,

doing so has generally required sample sizes

several fold larger than ours (Lappalainen et al.,

2013; Battle et al., 2014).

To provide a more informative estimate of the

difference in power to detect eQTL in baboons

relative to humans, we applied the same map-

ping, data processing, variant calling, and eQTL

modeling pipeline to a similarly sized RNA-seq

data set on 69 Yoruba (YRI) HapMap samples, in

which samples were sequenced to a similar depth

(Pickrell et al., 2010a). Using our approach for

estimating and modeling the gene expression

data, but obtaining the genotype data from an

independent array platform, we could identify

700 genes with significant eQTL in the YRI data

set at a 10% FDR. Approximately half (51%)

could be recovered if we only focused on SNPs in transcribed regions. This number (n = 357)

therefore reflects the likely theoretical limit of detection for performing eQTL mapping in which

SNPs are called based on RNA-seq data. Indeed, when eQTL mapping for the YRI was conducted

using genotype data obtained from RNA-seq reads (i.e., the same pipeline used for the baboons),

we identified 290 genes with eQTL (41.4% of those identified using independently collected

genotype data). eQTL identified in the RNA-seq pipeline do not differ from those identified only in

the conventional pipeline in either effect size or in surrounding sequence conservation, but do

tend to fall in more highly expressed genes (Wilcoxon test on RPKM values: p = 6.53 × 10−9;

Figure 1—figure supplement 9), suggesting that sequencing coverage considerations reduce the

number of identifiable eQTL below the theoretical maximum. The RNA-seq-based pipeline

therefore reduces the number of genes with detectable eQTL by 50–60%, suggesting that if

genotyping array data had been available for the baboons, we might have identified eQTL

for ∼3500–4000 genes, comparable to results from human data sets with more than 350 samples

(Lappalainen et al., 2013). To better understand the reasons behind this difference, we

investigated three possible explanations.

Shifts in the minor allele frequency spectrum
We observed that the minor allele frequency (MAF) spectrum of variants called in the baboon data set

included proportionally more intermediate frequency variants and proportionally fewer low frequency

variants than in the human data set (Figure 2A, inset). To investigate the degree to which this shift

conferred greater power to detect eQTL in the baboons, we simulated eQTL for 10% of the genes in

the study by randomly choosing a SNP near each of these genes.

We did so in two ways. First, we simulated the effect size of the eQTL, with possible effect sizes

ranging from 0.25 to 2.5, in intervals of 0.25 (effect sizes are relative to a standard normal distribution).

The power to detect an eQTL of a given effect size is contingent on the relative representation of

different genotype classes in a population, and hence MAF (larger MAFs produce a more balanced set

Figure 1. Continued

Figure supplement 6. PCA projection of YRI samples

using the RNA-seq-based pipeline vs independently

typed SNPs.

DOI: 10.7554/eLife.04729.009

Figure supplement 7. Agreement between eQTL and

ASE approaches for identifying functional variants.

DOI: 10.7554/eLife.04729.010

Figure supplement 8. Power to detect ASE vs eQTL.

DOI: 10.7554/eLife.04729.011

Figure supplement 9. Characteristics of YRI eQTL

identified in the RNA-seq vs conventional pipelines.

DOI: 10.7554/eLife.04729.012

Figure supplement 10. Differences in the magnitude of

ASE vs distance between sites.

DOI: 10.7554/eLife.04729.013

Figure supplement 11. Location of eQTL SNPs relative

to genes with and without controlling for local structure.

DOI: 10.7554/eLife.04729.014

Figure supplement 12. Number of eQTL identified by

PCs removed from the gene expression data set.

DOI: 10.7554/eLife.04729.015

Figure supplement 13. Coverage by genotype call.

DOI: 10.7554/eLife.04729.016

Figure supplement 14. Detection of ASE is not

dependent on number of heterozygotes, conditional on

total read depth.

DOI: 10.7554/eLife.04729.017

Tung et al. eLife 2015;4:e04729. DOI: 10.7554/eLife.04729 5 of 22

Research article Genomics and evolutionary biology

http://dx.doi.org/10.7554/eLife.04729.009
http://dx.doi.org/10.7554/eLife.04729.010
http://dx.doi.org/10.7554/eLife.04729.011
http://dx.doi.org/10.7554/eLife.04729.012
http://dx.doi.org/10.7554/eLife.04729.013
http://dx.doi.org/10.7554/eLife.04729.014
http://dx.doi.org/10.7554/eLife.04729.015
http://dx.doi.org/10.7554/eLife.04729.016
http://dx.doi.org/10.7554/eLife.04729.017
http://dx.doi.org/10.7554/eLife.04729


of alternative genotypes, and thus more power). Second, we simulated the proportion of variance in

gene expression levels (PVE) explained by the eQTL, with possible PVE values ranging from 5% to

50%, in intervals of 5%. In this case, power to detect an eQTL does not depend on MAF because

simulating the PVE directly integrates across the combined impact of effect size and MAF

(a simulated high PVE eQTL with low MAF implies a large effect size variant). Thus, the impact of the

MAF spectrum on the power to detect eQTL is reflected in the differences in power between the

baboon data set and the YRI data set in the effect size-based vs the PVE-based simulations. In all

cases, we calculated power as the proportion of genes with simulated eQTL recovered at

a 10% FDR.

In PVE-based simulations, power to detect simulated eQTL was greater in the YRI data set

(Figure 2A, dashed orange line vs dashed purple line), although this advantage disappeared when the

Figure 2. Power to detect eQTL in the Amboseli baboons compared to the HapMap YRI population. (A) Simulated eQTL data sets demonstrate that the

baboon data set has greater power to detect eQTL (at a 10% FDR threshold) when eQTL are simulated based on effect size (solid lines and triangles) but

not when eQTL are simulated based on proportion of variance in gene expression levels explained (PVE: dashed lines and circles). This result likely stems

from differences in the minor allele frequency (MAF) spectrum between baboons and YRI (inset), which favors eQTL mapping in the baboons; simulations

based on effect size are sensitive to MAF, but simulations based on PVE are not. (B) Masking the simulated eQTL SNP demonstrates that the baboon data

set has greater power to detect eQTL due to both increased cis-regulatory SNP density and more extended LD (inset). Subsampling the SNP density

in the baboon data set to the level of the YRI data set reduces the difference in power but does not remove it completely. In B, all results are shown

for PVE-based simulations to exclude the effects of the MAF. See Figure 4—figure supplement 1 for power simulations for masked SNPs based on

effect size.

DOI: 10.7554/eLife.04729.018

The following figure supplement is available for figure 2:

Figure supplement 1. Relationship between power to detect eQTL and simulated effect size, when the true eQTL is masked.

DOI: 10.7554/eLife.04729.019
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YRI data set was subsampled to the same size as the baboon data set (Figure 2A, dashed gray line).

However, the baboon data set provided more power to detect eQTL than the YRI data set (whether

subsampled or not) when simulations were based on effect size, where power scales with MAF

(Figure 2A, solid lines). Based on these differences, we estimate that the power to identify an eQTL of

effect size equal to the mean estimated beta in baboons (0.96), is increased in the Amboseli baboons

by approximately 1.34-fold (Figure 2A, solid purple line vs solid orange line) as a function of

differences in the MAF spectrum alone.

Differences in genetic diversity and linkage disequilibrium
Because our RNA-seq-based approach does not identify variants outside of transcribed regions,

causal SNPs were probably often not typed. To quantify the power to detect eQTL under this

scenario, we again simulated eQTL among genes in the baboon and YRI data sets, but masked the

causal sites. Doing so revealed much greater power to identify eQTL in baboons than in humans,

across all values of simulated PVE or effect size (Figure 2B; Figure 2—figure supplement 1).

One possible explanation for this observation stems from increased genetic diversity in the

baboons compared to the YRI. Indeed, in baboons we tested an average of 45.4 (±57.0 s.d.)

genetic variants for each gene, whereas applying the same pipeline in YRI yielded an average of

20.3 (±21.4 s.d.) testable variants per gene. An alternative explanation relates to patterns of LD,

which we estimate to decay somewhat more slowly in the baboons (Figure 2B, inset). Higher SNP

density in baboons increases the likelihood that, when a causal SNP is not typed, a nearby SNP will

be available that tags it. Longer range LD suggests that a given SNP could also tag distant causal

variants more effectively.

To assess the contributions of SNP density and LD, we refined our simulations by first thinning the

SNP density in the baboons to match SNP density in the YRI, and again masking the simulated causal

eQTL. As expected, reducing genetic diversity in the baboons reduced the power to detect genes

with a true eQTL (Figure 2B, purple dashed line vs pink dashed line). However, it did not completely

account for the difference between the human population and the baboon population, suggesting

that LD patterns probably contribute to higher eQTL mapping power in baboons as well as SNP

density. Specifically, for an eQTL that explains 28% of the variance in gene expression levels (the mean

PVE detected in baboons for genes with significant eQTL), we estimate that SNP density and LD

effects increase power by 1.21-fold (Figure 2B, purple dashed line vs pink dashed line) and 1.43-fold

(Figure 2B, pink dashed line vs orange dashed line), respectively, when causal SNPs are not typed.

Together, our simulations suggest that the MAF spectrum, genetic diversity, and LD patterns

increase the number of genes with detectable eQTL in baboons vs the YRI by 2.35-fold overall

(1.34× from the MAF, 1.21× from SNP density effects, and 1.43× from LD effects). Further,

considering that the effect size estimates in baboons tended to be larger than in the YRI (mean of

0.96 in baboons vs mean of 0.80 in YRI), the actual fold increase estimated from simulations is

approximately 6-fold (Figure 4—figure supplement 1: ratio of purple vs orange lines at these effect

sizes). This estimate is remarkably consistent with empirical results from our comparison of the

real baboon and YRI data, in which we identified 6.16-fold the number of eQTL in the baboons.

One possibility is that this difference arises from a history of known admixture in Amboseli between

the dominant yellow baboon population and immigrant anubis baboons (Papio anubis: Alberts and

Altmann, 2001; Tung et al., 2008). Thus, it might reflect the difference between an admixed

population and an unadmixed population rather than a difference between species. However, this

explanation seems unlikely because evidence for ASE does not extend further from tested genes in

baboons compared to YRI (Figure 1—figure supplement 10), and because adding controls for local

(chromosome-specific) structure when testing for eQTL still results in a large excess of eQTL

detected in the baboon data set (∼7× higher than in YRI: ‘Materials and methods’ and

Figure 1—figure supplement 11)

Mixed evidence for natural selection on gene expression levels
Interestingly, we found that genes harboring eQTL in baboons were also more likely to have

detectable eQTL in the YRI (hypergeometric test, p = 2.39 × 10−7). Given the sample size limitations of

the data sets we considered, this overlap suggests that large effect eQTL tend to be nonrandomly

concentrated in specific gene orthologues. This pattern could arise if the regulation of some genes

has been selectively constrained over long periods of evolutionary time, whereas others have been
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more permissible to genetic perturbation. Indeed, we found that the mean per-gene phyloP score

calculated based on a 46-way primate comparison was significantly reduced (reflecting less

conservation) for genes with detectable eQTL in both species, and greatest for genes in which eQTL

were not detected in either case (p < 10−53; Figure 3A). We obtained similar results using phyloP

scores based on a 100-way vertebrate comparison (p < 10−21; Figure 3—figure supplement 1).

eQTL were more likely to be identified for genes with higher genetic diversity (Figure 1—figure

supplement 8), which may account for the relationship between phyloP score and eQTL across

species: highly conserved genes are less likely to contain many variable sites. More conserved genes

also tend to have slightly lower average minor allele frequencies (p = 0.002), which might reduce the

power to detect eQTL (although the effect size is small: r2 = 0.001). However, genes with eQTL in both

species were also less likely to have orthologues in deeply diverged species, based on conservation in

Homologene (β = −0.036, p = 1.78 × 10−8; Figure 3B). Genetic diversity within the baboons is very

weakly correlated with Homologene conservation (r2 = 0.004) and uncorrelated with average minor

allele frequency (p = 0.38). Thus, sequence-level conservation scores and depth of homology across

species combine to suggest that eQTL—or at least those with relatively large effect sizes—are least

likely to be detected for strongly conserved loci, and most likely to be detected for lineage-specific,

rapidly evolving genes. Consistent with this idea, genes involved in basic cellular metabolic processes

were under-enriched among the set of genes with eQTL in both species, and enriched among the set

of genes for which no eQTL were detected in either species (Supplementary file 1B–C). The set

of genes with eQTL in either or both species, on the other hand, were enriched for loci involved

in antigen processing, catalytic activity, and interaction with the extracellular environment

(e.g., receptors, membrane-associated proteins).

Widespread selective constraint on gene expression levels has been suggested in previous eQTL

analyses in humans, with evidence supplied by a strong negative correlation between minor allele

frequency and eQTL effect size (Battle et al., 2014). This pattern could arise if selection acts against

large genetic perturbations, such that variants of large effect would be present only at low

frequencies. Consistent with this idea, plotting eQTL effect size vs MAF in the baboons results in

a very strong, highly significant negative correlation (r = −0.723, p < 10−280; Figure 3C), with no large

effect eQTL detected at higher MAFs. However, such a relationship could also be a consequence of

the so-called winner’s curse (in which sampling variance leads to upwardly biased effect size

Figure 3. Mixed evidence for negative selection on variants affecting gene expression level. (A) Genes that harbor detectable eQTL in baboons, the YRI,

or both are more likely to be conserved across long stretches of evolutionary time, based on mean phyloP scores in a 46-way primate genome comparison

(n = 7268; p < 10−53). (B) These genes are also more likely to be lineage-specific, based on Homologene annotations (n = 7065; p = 1.78 × 10−8).

(C) Although we detect a strong negative correlation between eQTL effect size and eQTL minor allele frequency, in support of pervasive selection against

alleles with large effects on gene expression levels, this correlation also appears when simulating constant eQTL effect sizes, suggesting winner’s curse

effects. See Figure 3—figure supplement 1 for phyloP results based on a 100-way vertebrate genome comparison.

DOI: 10.7554/eLife.04729.020

The following figure supplement is available for figure 3:

Figure supplement 1. Correlation between eQTL detection and mean phyloP scores based on 100-way vertebrate comparison.

DOI: 10.7554/eLife.04729.021
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estimates: Zöllner and Pritchard, 2007) because

the degree of bias in effect size estimation is

itself negatively correlated with MAF. Indeed,

when we simulated sets of eQTL with constant

small effect sizes (β = 0.75, close to the mean

effect size detected for SNPs with MAF ≥0.4), we
found that the relationship between estimated

effect size and MAF among detected eQTL

almost perfectly recapitulated the observed

negative correlation. Hence, the correlation

between estimated eQTL effect size and MAF

in the baboons does not provide strong

support for widespread negative selection on

gene expression phenotypes within species.

We note, however, that our sample size of

individuals is much smaller than that used for

a similar analysis in humans (Battle et al., 2014:

n = 922 individuals), and larger sample sizes

should attenuate winner’s curse effects.

Genetic and environmental
contributions to gene expression
variation in wild baboons
Finally, we took advantage of our data set

to generate the first estimates of genetic,

demographic (age and sex), and environmental

contributions to gene expression variation in wild

nonhuman primates (Supplementary file 1D).

While our limited sample size leads to high

variance around estimates for any individual gene,

the median estimates across genes should be

unbiased (Zhou et al., 2013), so we concentrated

on these overarching patterns. We focused

specifically on three social environmental

variables of known importance in this population,

all of which have been extensively investigated

as models for human social environments.

These were: (i) early life social status, which

predicts growth and maturation rates (Altmann

and Alberts, 2005; Charpentier et al., 2008);

(ii) maternal social connectedness to other

females, which predicts both adult lifespan and

the survival of a female’s infants (Silk et al., 2003, 2009, 2010; Archie et al., 2014); and (iii) maternal

social connectedness to males, based on recent evidence that heterosexual relationships have strong

effects on survival as well (Archie et al., 2014).

Overall, we found that genetic effects on gene expression levels tended to be far more

pervasive than demographic and environmental effects. Specifically, the median additive

genetic PVE was 28.4%, similar to, or slightly greater than, estimates from human populations

(Monks et al., 2004; McRae et al., 2007; Emilsson et al., 2008; Price et al., 2011; Wright

et al., 2014). We applied a Bayesian sparse linear mixed model (BSLMM: Zhou et al., 2013) to

further partition this additive genetic PVE into two components: a component attributable to

cis-SNPs (here, all SNPs within 200 kb of a gene) and a component attributable to trans-SNPs

(all other sites in the genome). Again similar to humans (Price et al., 2011; Wright et al., 2014),

we found that more of the additive genetic PVE is explained by the trans component (median

PVE = 23.8%) than the cis component (median PVE = 2.9%) (Figure 4). Unsurprisingly, we

estimated a larger cis-acting component for genes in which functional cis-regulatory variation

Figure 4. Genetic contributions to variance in gene

expression levels in wild baboons. Proportion of

variance in gene expression levels estimated for all

genes, genes without detectable eQTL, and genes with

detectable eQTL. Additive genetic effects on gene

expression variation, especially cis-acting effects, are

larger for eQTL genes than for other genes. See

Figure 4—figure supplements 1–3 for related results

on percent variance explained by genetic, environmen-

tal, and demographic variables and results using an

alternative set of SNPs for estimating ptrans.

DOI: 10.7554/eLife.04729.022

The following figure supplements are available for

figure 4:

Figure supplement 1. PVE explained by demographic

and early environmental variables.

DOI: 10.7554/eLife.04729.023

Figure supplement 2. Distribution of PVE explained by

additive genetic variance, age, sex, and maternal social

connectedness to males across all genes.

DOI: 10.7554/eLife.04729.024

Figure supplement 3. Genetic contributions to variance

in gene expression levels, with ptrans based on SNPs on

other chromosomes only.

DOI: 10.7554/eLife.04729.025
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was detected in our previous analysis (median PVE = 10.2% among eQTL genes and median

PVE = 5.0% among ASE genes).

In contrast to the substantial genetic effects we detected, the median PVE explained by age and

sex were 1.89% and 0.82%, respectively (Figure 4—figure supplements 1–2). The distribution of PVE

explained by age was significantly greater than expected by chance (Kolmogorov–Smirnov test

on binned PVEs, in comparison to permuted data: p < 10−11), whereas that explained by sex was not

(p = 0.100); large sex effects tended to be constrained to a small set of genes on the X chromosome

(Figure 4—figure supplement 1). Of the early environmental variables we investigated, only maternal

social connectedness to males explained more variance in gene expression levels than expected by

chance (p = 4.19 × 10−3), with a median PVE of 1.9%. Notably, while social connectedness to males

(i.e., heterosexual bonds) and social connectedness to females (i.e., same-sex bonds) are both known

predictors of longevity in the Amboseli baboons, previous analyses suggest that their effects are

largely independent (Archie et al., 2014). Our result extends this observation to the early life effects

of maternal social connectedness on variance in gene expression levels.

Taken together, our data suggest that while almost all genes are influenced by genetic variation,

the effects of demographic and environmental parameters are generally modest for any single aspect

of the environment. However, in at least some cases, we find evidence that early environmental effects

on gene expression levels appear to persist across the life course, as has previously been demonstrated

in laboratory settings and in response to severe early adversity in humans (e.g., Weaver et al., 2004;

Miller et al., 2009; Cole et al., 2012).

Discussion
Much of what we know about genetic contributions to variation in gene expression levels in primates

(and vertebrates more generally) come from the extensive body of research on humans. However,

increasing evidence indicates that humans are demographically unusual: compared to other primates,

humans exhibit low levels of neutral genetic diversity and a low long-term effective population size

(Chen and Li, 2001; Hernandez et al., 2007; Perry et al., 2012). Further, humans are

distinguished from other primates by recent explosive population growth (Keinan and Clark,

2012; Tennessen et al., 2012). While late Pleistocene population expansion has been suggested

for some nonhuman primates, including chimpanzees and Chinese-origin rhesus macaques

(Hernandez et al., 2007; Wegmann and Excoffier, 2010), none have undergone the extreme

levels of population increase that characterized humans. Indeed, evidence from microsatellite data

suggests that the long-term effective population size of baboons actually may have contracted

during this period (Storz et al., 2002).

These differences are not simply of historical interest, but also important for understanding the

genetic architecture of traits measured in the present day. Differences in demographic history not only

affect overall levels of genetic variation and the minor allele frequency spectrum, but also the mean

effect size of sites that contribute to phenotypic variation (Lohmueller, 2014). Interestingly,

demographic history does not impact overall trait heritability (Lohmueller, 2014; Simons et al.,

2014), perhaps explaining why we estimated mean additive genetic PVEs for gene expression levels in

baboons that are similar to those estimated for humans. However, demographic history can influence

the power to detect individual genetic contributions to phenotypic variation. Large-scale population

expansion of the type that occurred in human history appears to reduce power to identify genotype-

phenotype correlations for fitness-related traits (Lohmueller, 2014). This observation may account, in

part, for our ability to identify many more functional regulatory variants in the baboons than we

expected based on previous studies in humans.

However, while our analysis extends previous observations that large effect eQTL are nonrandomly

distributed, we found mixed evidence for widespread negative selection on gene expression levels.

Specifically, within the baboons alone, we found that the negative relationship between eQTL effect

size and minor allele frequency was explicable based on winner’s curse effects alone. Thus, increased

power to identify functional regulatory variants in the baboons is probably not due to pervasive

associations between gene expression levels and fitness. In contrast, stronger evidence for selection

on gene expression patterns stems from our cross species comparisons. In particular, we observed

that genes with eQTL in baboons significantly overlapped with genes with eQTL in humans, and that

these genes as a class also tended to be less constrained at the sequence-level (consistent with

observations for analyses of cis-eQTL in humans alone: Popadin et al., 2014). This result suggests that
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genes vary in their tolerance of functional regulatory genetic variation, and, intriguingly, that gene-

specific robustness to genetic perturbation may be a conserved property across species.

Because no comparable data are yet available for other large mammal populations, including for

other baboons, it is unclear whether our results are typical or instead a consequence of the Amboseli

population’s own unique history. In particular, the population has experienced recent admixture

between yellow baboons, the dominant taxon, and closely related anubis baboons (P. anubis) (Alberts

and Altmann, 2001; Tung et al., 2008). Admixture, which appears to be relatively common in natural

populations (Mallet, 2005), can have important consequences for genetic diversity and LD patterns.

While it appears to have had a modest impact on the relative ability to map gene expression

phenotypes in baboons vs the YRI data set, comparison to a non-admixed baboon population could

help resolve this question further. More generally, our results encourage further investigation of the

relationship between demography and trait genetic architecture in other populations, as has been

suggested for humans (Lohmueller, 2014) but could also be profitably extended to nonhuman model

systems. Such comparisons would provide an empirical basis for testing predicted relationships

between demographic history and the power to identify genotype-phenotype associations. From an

applied perspective, they could also help identify animal models that favor more highly powered

association mapping studies, a strategy that has already been heavily exploited in domestic dogs

(Karlsson et al., 2007; Karlsson and Lindblad-Toh, 2008) and suggested for rhesus macaques

(Hernandez et al., 2007). While the same sites will probably rarely be associated with the same traits

across species, this strategy could help identify molecular mechanisms that are conserved across

humans and animal models (e.g., Lamason et al., 2005). Comparisons that use matched sample types

will be particularly informative: our study compared eQTL detection in whole blood (from the

baboons) with eQTL from lymphoblastoid cell lines (YRI), which exhibit highly correlated, but not

identical, patterns of overall gene expression (Spearman’s rho = 0.645, p < 1 × 10−16)—these

differences could affect rates of eQTL detection as well.

Finally, our data—the first profile of genome-wide gene expression levels in a wild primate

population—serve as a useful proof of principle of the ability to concurrently generate genome-wide

gene expression phenotype and genotype data, and to relate them to each other using eQTL and ASE

approaches. Intensively studied natural primate populations—some of which have been studied

continuously for 30 or more years—have emerged as important phenotypic models for human

behavior, health, and aging. The approach we used here provides a way to leverage these models for

complementary genetic studies as well, especially if eQTL prove to be strongly enriched for sites

associated with other traits, as in humans (Nicolae et al., 2010). Although preliminary, our results

highlight the increasing feasibility of integrating functional genomic data with phenotypic data on

known individuals in the wild. For example, our data set revealed a number of genes in which variation

in gene expression levels could be mapped to an identifiable eQTL, validated using an ASE approach,

and also linked to early life environmental variation. Such cases suggest the potential for future

investigations of the molecular basis of persistent environmental effects, including whether genetic

and environmental effects act additively or interact.

Materials and methods

Study subjects and blood sample collection
Study subjects were 63 individually recognized adult members (26 females and 37 males) of the

Amboseli baboon population. All study subjects were recognized on sight by observers based

on unique physical characteristics. To obtain blood samples for RNA-seq analysis, each baboon

was anesthetized with a Telazol-loaded dart using a handheld blowpipe. Study subjects were

darted opportunistically between 2009 and 2011, avoiding females with dependent infants

and pregnant females beyond the first trimester of pregnancy (female reproductive status is

closely monitored in this population, and conception dates can be estimated with a high degree

of accuracy). Following anesthetization, animals were quickly transferred to a processing

site distant from the rest of the group. Blood samples for RNA-seq analysis were collected

by drawing 2.5 ml of whole blood into PaxGene Vacutainer tubes (Qiagen, Valencia, CA),

which contain a lysis buffer that stabilizes RNA for downstream use. Following sample collection,

study subjects were allowed to regain consciousness in a covered holding cage until fully

recovered from the effects of the anesthetic. They were then released within view of their
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social group; all subjects promptly rejoined their respective groups upon release, without

incident.

Blood samples were stored at approximately 20˚C overnight at the field site. Samples were then

shipped to Nairobi the next day for storage at −20˚C until transport to the United States and

subsequent RNA extraction.

Gene expression profiling using RNA-seq
For each RNA sample (one per individual), we constructed an RNA-seq library suitable for measuring

whole genome gene expression using Dynal bead poly-A mRNA purification and a standard Illumina

RNA-seq prep protocol. Each library was randomly assigned to one lane of an Illumina Genome

Analyzer II instrument and sequenced to a mean depth of 30 million 76-base pair reads (±4.5 million

reads s.d., Supplementary file 1A). The resulting reads were mapped to the baboon genome

(Panu2.0) using the efficient short-read aligner bwa 0.5.9 (Li and Durbin, 2009), with a seed length of

25 bases, a maximum edit distance of two mismatches in the seed, a read trimming quality score

threshold of 20, and the default maximum edit distance (4% after trimming). To recover reads that

spanned putative exon–exon junctions, and therefore could not be mapped directly to the genome,

we used the program jfinder on reads that did not initially map (Pickrell et al., 2010b). Finally, we

filtered the resulting mapped reads data for low quality reads (quality score <10) and for reads that

did not map to a unique position in the genome. To assign reads to genes, we used the RefSeq

exon annotations for Panu 2.0 (ref_Panu_2.0_top_level.gff3, downloaded September 6, 2012).

We considered the total read counts for each gene and individual as the sum of the number of

reads for that individual that overlapped the union of all exon base pairs assigned to a given

gene. In downstream analyses, we considered only highly expressed genes that had non-zero

counts in more than 10% individuals, and that had mean read counts greater than or equal to 10

(excluding the gene for beta-globin).

We then performed quantile normalization across samples followed by quantile normalization for

each gene individually, resulting in estimates of gene expression levels for each gene that were

distributed following a standard normal distribution. This procedure effectively removed GC bias in

gene expression level estimates (Figure 1—figure supplement 2). For eQTL mapping, ASE analysis,

and PVE estimation for sex and age we used all 63 individuals. For PVE estimation for maternal rank

and social connectedness, missing data meant that we conducted our analysis on n = 52 and n = 47

individuals, respectively.

Variant identification and genotype calls
To identify genetic variants in the baboon data set, we used the Genome Analysis Toolkit (v. 1.2.6;

McKenna et al., 2010; DePristo et al., 2011). Because no validated reference set of known genetic

variants are available for baboon, we performed an iterative bootstrapping procedure for base quality

score recalibration. Specifically, we performed an initial round of base quality score recalibration and

identified a set of variants using GATK’s UnifiedGenotyper and VariantFiltration walker. From this call

set, we constructed a set of high confidence variants with quality score ≥100 that passed all filters for

variant confidence (variants failed if QD < 2.0), mapping quality (variants failed if MQ < 35.0), strand

bias (variants failed if FS > 60.0), haplotype score (variants failed if HaplotypeScore >13.0), mapping

quality (variants failed if MQRankSum < −12.5) and read position bias (variants failed if

ReadPosRankSum < −8.0). We used this high confidence set as the set of ‘known sites’ in a second

round of base quality score recalibration, repeating this procedure until the number of variants

identified in consecutive rounds of recalibration stabilized. In the final call set, we removed all sites

(i) that were monomorphic in the Amboseli samples; (ii) for which genotype data were missing for

more than 12 individuals (19%) in the data set; (iii) that deviated from Hardy–Weinberg

equilibrium; and (iv) that failed the above quality control filters. We further filtered the data set

to contain only sites with a minimum quality score of 100 that were located within 200 kb of

a gene of interest, and that were sequenced at a mean coverage ≥5× across all samples. We

validated our quality control and filtering steps by performing the same procedure on an RNA-

seq data set from the HapMap Yoruba population (see below). These steps resulted in a set of

64,432 single nucleotide polymorphisms carried forward into downstream analysis (30,938 for

the YRI). For eQTL mapping analysis, missing genotypes in this final set were imputed using

BEAGLE (Browning and Browning, 2009).

Tung et al. eLife 2015;4:e04729. DOI: 10.7554/eLife.04729 12 of 22

Research article Genomics and evolutionary biology

http://dx.doi.org/10.7554/eLife.04729


To estimate genome-wide LD, we followed the approach of Eberle et al. (2006), which uses allele

frequency-matched SNPs to calculate pair-wise LD. Specifically, we selected SNPs with MAFs greater

than 10% and divided them into four subgroups (MAF between 10%–20%; MAF between 20%–30%;

MAF between 30%–40%; and MAF between 40%–50%). We then calculated pair-wise r2 for all SNP

pairs within 100 kb in each subgroup using VCFtools (Danecek et al., 2011) and combined values

from all four subgroups.

Estimating accuracy of SNP genotypes using human RNA-seq data
To assess the accuracy of the RNA-seq-based genotyping calls we performed in the baboons, we

investigated a similarly sized data set of RNA-seq reads from a human population (Pickrell et al.,

2010a). Because this data set focused on samples from the HapMap consortium (n = 69 members of

the Yoruba population from Ibadan, Nigeria), we were able to compare genotypes called using the

RNA-seq pipeline to independently collected genotype data from HapMap Phase 3 (r27)

(International HapMap Consortium, 2010). To do so, we focused on 9919 variants that were

genotyped in both data sets. We then calculated the correlation between genotypes called in

the RNA-seq-based pipeline and genotypes from HapMap, for each individual (Figure 1—figure

supplement 5A). We also found that low accuracy was correlated with the level of apparent

homozygosity in the genotype data (Figure 1—figure supplement 5B). In the baboon data, we

had no individuals with unusually low homozygosity, but six individuals with unusually high

homozygosity (>80% of genotype calls). These outliers were missing a median of 10.6% of data

in the unimputed genotype data set, whereas all other individuals were missing a median of 0.6%

data. However, removing these six individuals from our analysis resulted in very similar results as

using the full data set: 87.6% of eQTL genes (n = 1566) identified when using all individuals were

also identified with this subset.

Importantly, the available data from humans also support accurate variant discovery. Of the 30,938

sites that we identified from the RNA-seq data and that passed all of our filters, only 3.1% (967) did

not have an assigned rsID in dbSNP release 138. These sites were likely enriched for false positives, as

the transition/transversion ratio for this set was 1.42, vs 2.80 for the set of 30,938 sites as a whole.

eQTL mapping
To identify cis-acting eQTLs in the baboon data set, we used the linear mixed model approach

implemented in the program GEMMA (Zhou and Stephens, 2012). This model provides

a computationally efficient method for eQTL mapping while explicitly accounting for genetic

non-independence within the sample; in our case, some individuals in the data set are related

(although overall relatedness was low: the median kinship coefficient across all pairs was 0.015;

mean = 0.024 ± 0.033 s.d.).

For each gene, we considered all variants within 200 kb of the gene as candidate eQTLs. For each

variant, we fitted the following linear mixed model:

y = μ+ xβ+u+ ε;

u∼MVN
�
0;   σ2uK

�
;

ε∼MVN
�
0;   σ2eI

�
;

and tested the null hypothesis H0: β = 0 vs the alternative H1: β ≠ 0. Here, y is the n by 1 vector of

gene expression levels for the n individuals in the sample. Gene expression values were first

corrected for hidden factors that could act as sources of global structure (e.g., batch effects or

ancestry- or environment-related trans effects) by regressing out the first 10 principal components

of the gene expression data. Consistent with previous results (e.g., Pickrell et al., 2010a), this

procedure greatly improves our ability to detect eQTL (Figure 1—figure supplement 12). In the

model, μ is the intercept; x is the n by 1 vector of genotypes for the variant of interest; and β is the

variant’s effect size. The n by 1 vector of u is a random effects term to control for individual

relatedness and other sources of population structure, where the n by n matrix K = XXT/p provides

estimates of pairwise relatedness derived from the complete 63 × 64,432 genotype data set X.

Residual errors are represented by ε, an n by 1 vector, and MVN denotes the multivariate normal

distribution.
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We took the variant with the best evidence (i.e., lowest p-value) for association with gene

expression levels for each gene, and then calculated corrected gene-wise q-values (with a 10%

false discovery rate threshold) via comparison to the same values obtained from permuted data

(similar to Barreiro et al., 2012; Pickrell et al., 2010a).

Possible confounds associated with eQTL mapping using RNA-seq data
We evaluated the potential for eQTL mapping based on RNA-seq data to introduce four possible

confounds.

First, for genes with large effect cis-eQTLs, reads from heterozygotes at eQTL-linked sites might

be biased towards the allele associated with higher gene expression levels. If so, heterozygotes

might be mistakenly genotyped as homozygotes for the high expressing allele, resulting in an

underrepresentation of heterozygous genotypes relative to neutral expectations. To control for this

possibility, we eliminated sites that violated Hardy-Weinberg expectations (n = 2386) from our

analyses. We note, however, that this scenario would not introduce false positives. Instead, it would

lead to more conservative detection of additive eQTL effects, with the direction of an estimated

eQTL effect still consistent with the true effect.

Second, SNP calling might be biased towards the reference allele. If so, more reads would be

required to support a genotype call of homozygote alternate than a genotype call of homozygote

reference. This bias would result in higher apparent expression levels for alternate allele homozygotes

and lower expression levels for reference allele homozygotes, which could create false positive eQTLs.

However, we observe no evidence for this scenario in our data set. For all tested SNPs (n = 64,432)

and for eQTL SNPs only (n = 1693), alternate allele homozygotes tend to have slightly lower coverage

than reference allele homozygotes, and heterozygotes tend to have the highest coverage (because

more reads are required to support inference of heterozygosity) (Figure 1—figure supplement 13).

Thus, coverage and genotype do not covary additively, and this potential confound is unlikely to

produce false positive eQTLs.

Third, read mapping might be biased towards the reference allele, such that reads carrying the

alternate allele are less likely to map because they contain more mismatches to the reference genome.

This possibility is consistent with our observation that alternate allele homozygotes tend to have

slightly less coverage than reference allele homozygotes (Figure 1—figure supplement 13).

While this difference in coverage is significant (Kolmogorov-Smirnov test: p < 2.2 × 10−16 for all

SNPs; p = 3.9 × 10−5 for eQTL SNPs), the magnitude of the effect itself is modest (Figure 1—figure

supplement 13), probably because we allowed reads to map with up to three mismatches:

Wittkopp and colleagues have shown that reference allele mapping bias is largely obviated by

allowing reads to map with more mismatches (Stevenson et al., 2013). Further, systematic calling of

false positive eQTLs due to biased read mapping would predict a bias towards negative effect sizes

(i.e., eQTL effects suggesting that the alternate allele is associated with lower expression levels).

Our data are not consistent with such a pattern: 47% of eQTL betas are negative, whereas 53% are

positive. Reference allele mapping biases are, however, more likely to affect ASE analysis,

producing a pattern of greater expression in the reference allele. Indeed, we do observe a bias

towards negative betas in the ASE analysis (67.2% of n = 510 genes), although the overall

magnitude and direction of ASE data agree well with eQTL evidence.

Fourth, lower mean coverage in homozygotes of either type relative to heterozygotes could

induce false positive eQTLs in which the major allele was associated with lower gene expression

levels. To test this possibility, we recoded eQTL effects to reflect the effect of the major allele

instead of the effect of the alternate allele (i.e., a genotype of 0 = homozygous minor and

a genotype of 2 = homozygous major). We observed a modest excess of eQTL for which the major

allele was associated with lower gene expression levels (56%, binomial test p = 1.15 × 10−7).

This bias did not differ depending on whether the major allele was the reference allele or the

alternate allele (Fisher’s Exact Test, p = 0.28), supporting minimal read mapping biases in our data.

Instead, it appears to be primarily driven by SNPs with low minor allele frequencies (proportion

of negative betas for the lowest quartile of MAFs = 62.8%, p = 7.49 × 10−8; highest quartile of

MAFs = 48.6%, p = 0.602). At these sites, eQTL inference relies primarily on two genotype classes

(the major allele homozygotes and heterozygotes) rather than three genotype classes. Because

heterozygotes tend to have slightly higher coverage than homozygotes of both classes, spurious
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relationships between genotype and gene expression levels are much less likely to be observed

when both types of homozygotes are well represented (i.e., MAFs are larger).

Along with the high genotype accuracy rates estimated from the Yoruba data, our analyses

thus indicate that the set of eQTL we identified are largely robust to RNA-seq-specific confounds.

The eQTL identified in YRI in the conventional pipeline vs the RNA-seq pipeline offer a further

source of comparison. We find that eQTL identified through the RNA-seq pipeline tend to be

associated with more highly expressed genes (providing greater power to call genotypes:

Wilcoxon test p = 6.53−9), but otherwise do not differ in sequence conservation (phyloP scores: p = 0.707;

Homologene scores: p = 0.603) or in estimated effect size (p = 0.137) (Figure 1—figure supplement 9).

Further, effect size magnitude is highly correlated across pipelines when eQTL are discovered in both

pipelines (r = 0.874, p < 10−57). When eQTL were discovered only in the RNA-seq pipeline (n = 104), they

tended to be high on the ranked list of eQTL evidence in the conventional pipeline as well (median rank of

1395, where the top 700 were significant and 10,615 genes were tested), suggesting that many of them

did not pass the threshold for eQTL detection in that analysis. Thus, the most salient source of error

stems from low MAF sites, which are also the cases most vulnerable to sampling error and winner’s

curse effects more generally (Figure 3)—a problem that is not confined to RNA-seq-based eQTL

mapping. Taken together, these analyses argue that, as a general rule, eQTL associated with lower

MAF SNPs should be treated with increased caution.

ASE detection
To identify ASE, we focused on SNPs within gene exons with Phred-scaled quality scores greater

than 10. We further required that these sites have more than five reads in more than two individuals

and more than 300 total reads across all heterozygous individuals. This threshold is based on the

observation that the power to detect ASE is dependent on sequencing read coverage at

heterozygous sites (Fontanillas et al., 2010). Indeed, in our data set, power to detect ASE appeared

to scale primarily with total read coverage rather than number of heterozygous individuals. Sites

with more reads tended to have more heterozygotes (r = 0.266, p < 10−100); however, when sites

were partitioned by total read depth (in deciles), sites with significant ASE were not more likely to

harbor more heterozygotes in any decile (Wilcoxon test comparing number of heterozygotes in

significant sites vs background; Figure 1—figure supplement 14).

After these filtering steps, we retained 8154 SNPs associated with 2280 genes for ASE analysis.

For ASE analysis, we did not take into account possible recombination between exonic SNPs and the

(unknown) cis-regulatory variants whose effects they capture, as we did not have detailed data on

recombination rates across the baboon genome. However, recombination between exonic SNPs and

the true causal regulatory SNPs would decrease our power to detect ASE.

For each variant, we considered a beta-binomial distribution (following Pickrell et al., 2010a)

to model the number of reads from the (+) haplotype (denoted as xi
+) or the number of reads from

the (−) haplotype (denoted as xi
−), conditional on the number of total reads (denoted as yi = xi

+ + xi
−),

for each individual i, or

x+i |yi ∼binomialðyi ; θÞ;

θ∼betaðα; βÞ:
We tested the null hypothesis H0: α = β vs the alternative H1: α ≠ β using a likelihood ratio test.

For both the null model and the alternative model, beta distribution parameters (α and β) were

estimated via a maximum likelihood approach, using the R function optim. Again, we took the

variant with the lowest p-value for each gene, and then calculated corrected gene-wise q-values

(using a 10% false discovery rate threshold) via comparison to the same values obtained from an

empirical null distribution. To construct the empirical null distribution, we performed the same

analysis after substituting the xi
+ value for each variant of interest, for each heterozygous

individual, with a randomly selected xi
+ value from a heterozygous site elsewhere in the genome

(contingent on that site having the same number of total reads, yi).

Power simulations
To assess the relative power of eQTL mapping in baboons vs the YRI data set, we randomly selected

10% of the genes in each data set to harbor eQTL. For each of these simulated eQTL genes, we then
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randomly chose a SNP among all the cis-SNPs tested (i.e., all variable sites that passed quality control

filters and fell within 200 kb of a gene of interest) and assigned it as a causal eQTL. The impact of

the eQTL was simulated using either effect size, in which we simulated a constant effect size between

0.25 and 2.5 (in intervals of 0.25) or PVE, in which we chose an effect size that explained a specific

proportion of variance in gene expression levels (from 5% to 50%, in intervals of 5%). We then

simulated gene expression levels by adding the effect of the simulated cis-eQTL SNP to residual

errors drawn from a standard normal distribution. To calculate the FDR, we also simulated a set of

genes with no eQTL. For each combination of effect sizes and population (baboon or YRI), and for

each simulation scenario (e.g., with the causal SNP masked or unmasked, with SNP density thinned in

the baboons, or using PVE vs a constant effect size), we performed 10 replicates. For each replicate,

we calculated the power to detect eQTL as the proportion of simulated eQTL genes recovered at a

10% empirical FDR.

Testing the contribution of admixture to eQTL detection
To investigate whether admixture might drive our power to detect eQTL in the baboon data set, we

performed three analyses.

First, we asked whether evidence for ASE remained similar across longer distances (i.e., between

sites separated by more base pairs) in the baboons vs in the YRI. Such a pattern might be expected if

long-distance, admixture-driven LD explained our other observations. However, the pattern of ASE

similarity (the magnitude of the difference between ASE estimates) by distance between sites was

highly congruent between the YRI and baboon data sets (Figure 1—figure supplement 10).

Second, we investigated whether adding a control for local structure (i.e., population structure in

cis to a gene of interest, and based only on variants located on the same chromosome) asymmetrically

reduced evidence for eQTL in the baboon data set relative to the YRI data set. To do so, we regressed

out the top two PCs for variants on the same chromosome as the gene of interest from the gene

expression data prior to fitting mixed effects models. We found that this approach modestly reduced

the number of eQTL discoveries in the baboon data set (n = 1583 from n = 1787, an 11.4% difference).

However, this number was still 5.4× larger than the number of eQTL detectable in the YRI, and when

we applied the same local structure control to the YRI data, a comparable drop in the number of

discoverable eQTL also occurred (n = 216 from n = 290, resulting in a ∼7× fold increase in eQTL in

baboons vs YRI).

Third, we compared the spatial distribution of eQTL in baboon between the models with and

without local structure controls. We reasoned that if admixture drove most of the signal in the data

set, controlling for local structure should shift the location of discovered eQTL closer to the gene of

interest, where the strongest cis effects are generally identified. However, the locations of eQTL were very

similar under both models (Kolmogorov-Smirnov test, p = 0.577; Figure 1—figure supplement 11).

Evidence for patterns consistent with natural selection on gene
expression levels
We investigated the relationship between conservation level and the presence of detectable eQTL

in the Amboseli baboons or the YRI using phyloP conservation scores (Pollard et al., 2010) and

Homologene conservation of orthology across species. For the former, we extracted the per-site

phyloP score from the 46-way primate comparison or 100-way vertebrate comparison on the UCSC

Genome Browser for each base contained within the annotated exons (including untranslated regions)

used for mapping RNA-seq reads in the YRI. We then calculated the average phyloP score across all

exons associated with a given gene. We obtained Homologene scores from the CANDID database

(Hutz et al., 2008). In both cases, we used linear models to test for a relationship between

conservation level and three categories of genes: those with no detectable eQTL in either the

baboons or YRI; those with a detectable eQTL in one of the two species; and those with a

detectable eQTL in both species.

To investigate whether the correlation between minor allele frequency and eQTL effect size could

be a result of winner’s curse effects, we extracted the results from our simulations in which the causal

variant was masked and the true effect size was fixed at a small value (beta = 0.75). We then calculated

the correlation between the estimated effect size (β) from these simulations against minor allele

frequency, for detected eQTL only.
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Estimation of genetic contributions to gene expression
We used the Bayesian sparse linear mixed model (BSLMM) approach implemented in the GEMMA

software package (Zhou and Stephens, 2012) to estimate the genetic contribution to gene

expression variation. Specifically, for each gene, we fit the following model:

y = μ+ xcisβcis + xtransβtrans + ε;

βcis;i ∼ πN
�
0;   σ2a

�
+ ð1− πÞδ0;

βtrans;i ∼N
�
0;   σ2b

�
;

where y is the n by 1 vector of gene expression levels for n individuals; μ is the intercept; xcis is an n by

pcis matrix of genotypes for pcis cis-SNPs and βcis are the corresponding effect sizes; xtrans is an n by

ptrans matrix of genotypes for ptrans trans-SNPs and βtrans are the corresponding effect sizes; and ε is an
n by 1 vector of i.i.d. residual errors. We used different priors for cis-acting effects and trans-acting

effects to capture different properties for the two components. Specifically, the spike-slab

prior on the cis effects βcis captures our prior belief that only a small proportion of local SNPs has

cis effects and these effects are relatively large. The normal prior on the trans effects captures

our prior knowledge that trans-acting SNPs tend to be relatively difficult to find and have

relatively small effects. In addition, because pcis is small and ptrans approximately equals p, the

number of total SNPs, we used p instead of ptrans to facilitate computation (i.e., ptrans was based

on all genotyped sites used in our analyses, n = 64,432). Results are qualitatively similar if ptrans is

calculated based on sites that must act in trans (i.e., sites located on a different chromosome

than the chromosome containing the gene of interest: Figure 4—figure supplement 3).

We used Markov chain Monte Carlo (MCMC) to fit the model with 1000 burn-in and 10,000

sampling steps. We obtained posterior samples of βcis and βtrans to calculate the PVE attributed

by each of the two components, as well as the total additive genetic PVE contributed by both

components.

To calculate PVE values for demographic and environmental predictors, we again used the linear

mixed model approach implemented in GEMMA to control for additive genetic effects. Sex was

known from direct observation of the study subjects. Ages were known to within a few days’ error for

52 of the 63 individuals in the data set; six animals had birth dates estimated to be accurate within

1 year, four animals had birth dates estimated to be accurate within 2 years, and one had a birth date

estimated to be less accurate than 2 years. Early social status was measured using the proportional

dominance rank of the individual’s mother, at the time of that individual’s conception. Dominance

ranks are assigned monthly using ad libitum observations of dyadic agonistic (aggressive or

competitive) encounters within social groups (Hausfater, 1974; Alberts et al., 2003). Maternal

social connectedness values were defined as the social connectedness of the individual’s mother,

in the year of that female’s life during which the focal individual was born. Social connectedness

is calculated on a yearly basis as the frequency with which a female was involved in affiliative

interactions, relative to the median for all females in the population at the same time and controlling

for observer effort (see Runcie et al., 2013; Archie et al., 2014). Social connectedness is measured

for females, but can focus on either female–female relationships (SCI-F) or a female’s relationship

with adult males (SCI-M), which have independent effects on longevity in this population (Archie

et al., 2014). For SCI-F, affiliative interactions included both grooming interactions and close spatial

proximity to other females. For SCI-M, only grooming interactions were used.

For each gene, we fit the following model:

y = μ+ xβ+u+ ε;

u∼MVN
�
0;   σ2uK

�
;

ε∼MVN
�
0;   σ2eI

�
;

where x is the n by 1 vector of values for the demographic or environmental predictor of interest and β

is its coefficient. The n by 1 vector of u is a random effects term with K = XXT/p controlling for additive

genetic effects. We calculated the PVE estimate as var(xβ)/var(y), where var denotes the sample

variance.
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