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Text S3 The Probit BSLMM and Binary Traits

MCMC strategy

We use “probit BSLMM” to refer to a BSLMM with a probit link to model binary traits:

P (yi = 1|xi, β̃, ui) = 1− P (yi = 0|xi, β̃, ui) = Φ(µ+ xT
i β̃ + ui) (i = 1, · · · , n), (62)

where yi is the binary trait for ith individual, xi is the p-vector of genotypes for ith individual, ui is ith
element of random effects vector u and Φ is the cumulative distribution function (CDF) of the standard
normal distribution. Following [1], we introduce a vector of auxiliary variables z and obtain the equivalent
latent variable model as:

yi =

{
1 if zi > 0
0 if zi ≤ 0

, (63)

zi = µ+ xT
i β̃ + ui + εi εi ∼ N(0, 1), (64)

where zi is ith element of vector z.
We use the same prior specifications for the hyper-parameters as described in the main text (except

that τ = 1 here). We use a similar MCMC strategy as described in Text S2 to sample posteriors, with
an additional step to sample the posteriors of the latent variables z using the conditional distribution
P (z|y,γ, β̃,u):

zi|yi = 1, β̃, ui ∼ N(µ+ xT
γiβ̃ + ui, 1) left truncated at 0, (65)

zi|yi = 0, β̃, ui ∼ N(µ+ xT
γiβ̃ + ui, 1) right truncated at 0. (66)

We denote z̄ as the sample mean of z, or z̄ = 1
n

∑n
i=1 zi. Conditional on the latent variables z, the posterior

sampling for the hyper-parameters (h, ρ, π,γ) is based on the marginal likelihood P (h, ρ, π,γ|z), which
is slightly different from that in Text S2 as we do not integrate out τ here:

P (z|h, ρ, π,γ) ∝ |H|− 1
2 |σ−2

a Ω| 12 e− 1
2 (z−1nz̄)TP(z−1nz̄). (67)

After obtaining the posterior samples of the hyper-parameters, we sample the posteriors of β̃ and u using
conditional distributions identical to those listed in Text S2 by setting τ = 1. Finally, we sample µ based
on the conditional distribution P (µ|z,γ, β̃,u):

µ|z,γ, β̃,u ∼ N(
1

n
1T
n (z−Xγ β̃γ − u),

1

n
). (68)

For efficient calculation of the above marginal likelihood function P (z|h, ρ, π,γ), we use the same
strategy as described in Text S2. However, as a transformation of the latent vector z to UT z as well
as transformations of UTu and UTXβ̃ back to u and Xβ̃ are needed in every Gibbs iteration, the per-
iteration computational cost of the probit BSLMM increases quadratically with the number of individuals.

Application to Mouse Data

To generate a binary data set on which to illustrate the probit BSLMM and compare its performance
with BSLMM, we use the mouse data from the main text, transforming the quantitative values of the
three traits into binary values by assigning the half individuals with higher quantitative values to 1 and
the other half to 0. We consider two different approaches here: (linear) BSLMM and probit BSLMM. The
BSLMM can be viewed as a first order approximation to its probit counterpart. We use Brier score in
the test sample to evaluate prediction performance. For BSLMM, we threshold the predicted probability
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values that are above 1 to be exact 1 and those below 0 to be exact 0. We contrast the performance
of the probit BSLMM against BSLMM by calculating the Brier score difference, where a positive value
indicates worse performance than BSLMM.

Figure S6 shows Brier score differences for the three traits. Interestingly, for the three traits here,
treating binary values as quantitative traits using BSLMM works better than modeling them directly
using the probit BSLMM. This may partly reflect numerical inaccuracies due to the greater computational
burden of fitting the probit BSLMM.

Correction factor for estimating PVE for case-control data

Here, we provide an alternative way to derive the correction factor, that appeared in [2], for transforming
PVE estimate in the observed scale back to that in the liability scale. Our approach is based on Taylor
series approximation. To simplify notation, we denote kp = Pp(yi = 1) as the case proportion in the
population, ka = Pa(yi = 1) as the case proportion in the ascertained case-control sample, Φ as the
normal CDF (cumulative distribution function), φ as the normal PDF (probability distribution function),
µp satisfies Φ(µp) = kp, µa satisfies Φ(µa) = ka, and zp = φ(µp).

First, we assume, following [2], a probit model on the population scale:

Pp(yi = 1|xi, β̃, ui) = 1− Pp(yi = 0|xi, β̃, ui) = Φ(µp + xT
i β̃ + ui) (i = 1, · · · , N), (69)

where N is the population sample size.
The conditional distribution in the ascertained case-control sample can be derived by Bayes theorem

Pa(yi = 1|xi, β̃, ui) =
Pa(xi, ui|yi = 1, β̃)Pa(yi = 1|β̃)

Pa(xi, ui|β̃)
(i = 1, · · · , n), (70)

where n is the case-control sample size.
We notice that Pa(xi, ui|yi = 1, β̃) = Pp(xi, ui|yi = 1, β̃) holds for ideal case-control studies, as cases

in the ascertained sample are selected randomly from all cases in the population. We assume further
Pp(yi = 1|β̃) ≈ Pp(yi = 1) = kp and Pa(yi = 1|β̃) ≈ Pa(yi = 1) = ka, that the probability of being a
case does not depend on parameters, an assumption commonly made (see e.g. [3]) and likely hold when

parameters are close to their true values. We further denote a normalizing constant Z = Pa(xi,ui|β̃)

Pp(xi,ui|β̃)
, and

we have

Pa(yi = 1|xi, β̃, ui) ≈
1

Z

ka
kp

Φ(µp + xT
i β̃ + ui), (71)

and similarly

Pa(yi = 0|xi, β̃, ui) ≈
1

Z

1− ka
1− kp

(1− Φ(µp + xT
i β̃ + ui)), (72)

which give the normalizing constant

Z =
ka
kp

Φ(µp + xT
i β̃ + ui) +

1− ka
1− kp

(1− Φ(µp + xT
i β̃ + ui)). (73)

We expand the above two likelihoods using Taylor series expansion with respect to xT
i β̃ + ui at 0. If we

use the linear term only for approximation, we obtain

Pa(yi = 1|xi, β̃, ui) ≈ ka +
ka(1− ka)zp
kp(1− kp)

(xT
i β̃ + ui), (74)

Pa(yi = 0|xi, β̃, ui) ≈ 1− ka −
ka(1− ka)zp
kp(1− kp)

(xT
i β̃ + ui). (75)
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In other words, the expected value of individual binary label can be approximated by

E(yi) = Pa(yi = 1|xi, β̃, ui) ≈ ka +
ka(1− ka)zp
kp(1− kp)

(xT
i β̃ + ui), (76)

which suggests using a linear mixed model to treat binary values as quantitative traits to infer the
parameters. The estimated PVE on the observed scaling using a linear mixed model is

ˆPVEo = (
ka(1− ka)

kp(1− kp)
zp)2V (X

ˆ̃
β + û)

V (y)
=
ka(1− ka)z2

p

k2
p(1− kp)2

V (X
ˆ̃
β + û) ≈

ka(1− ka)z2
p

k2
p(1− kp)2

PVEl, (77)

where ˆPVEo is the PVE estimate on the observed scale, and PVEl is the true PVE on the liability scale.

Therefore, we can use the correction factor
k2
p(1−kp)2

ka(1−ka)z2
p

to transform the PVE estimate on the observed

scale back to that on the liability scale.
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