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Text S2 Detailed MCMC Strategy for BSLMM

To simplify notation, we assume in this section that y is centered. We use Markov chain Monte Carlo
to obtain posterior samples of (h, ρ, π,γ) on the product space (0, 1) × (0, 1) × (0, 1) × {0, 1}p, which is
given by

P (h, ρ, π,γ|y) ∝ P (y|h, ρ, π,γ)P (h)P (ρ)P (γ|π)P (π). (53)

In the above equation, we explored the fact that the parameters β̃, u and τ can be integrated out
analytically to compute the marginal likelihood P (y|h, ρ, π,γ). The marginal likelihood is
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Notice again that σ2

a is a function of h, ρ and π, while σ2
b is a function of h and ρ.

To efficiently evaluate the marginal likelihood, we perform an eigen decomposition of the relatedness
matrix K = UDUT at the beginning of the MCMC, where U is the matrix of eigen vectors and D is a
diagonal matrix of eigen values. We transform both the phenotype vector and the genotype matrix by
multiplying the eigen matrix and calculate UTy and UTX. Afterwards, as has been shown previously,
the calculations of the determinant and the inverse of matrix H, as well as the vector-matrix-vector form
yTPy, in each iteration of the MCMC, are easy to perform [1,2].

We use a standard Metropolis-Hastings algorithm to draw posterior samples of the hyper-parameters
(h, ρ, π,γ) based on the above marginal likelihood. Following [3], we use a rank based proposal distribution
for γ, and use random walk proposals based on uniform distributions for h, ρ and log(π). In particular,
we first obtain single-SNP p values using a standard LMM with GEMMA algorithm [2], and then rank
SNPs based on these p values from small to large. Our aim is to use a proposal distribution for γ that
puts more weights on SNPs that are ranked higher by the single SNP tests, and to do this we consider
a mixture distribution Qp = 0.3Up + 0.7Gp, where Up is a uniform distribution on 1, · · · , p and Gp is a
geometric distribution truncated to 1, · · · , p with its parameter chosen to give a mean of 2000. We denote
γ+ = {i : γi = 1} and we propose the new γ by randomly choose one of the following steps:

• add a covariate with probability 0.4: generate r from Qp until the covariate with rank r is not in
γ+, then add this covariate to γ+

• remove a covariate with probability 0.4: pick a covariate in γ+ uniformly at random and remove it
from γ+

• switch a pair of covariates with probability 0.2: pick up two covariates by the above two steps, and
switch their indicator values

For the other hyper-parameters, we update log(π) by adding a random variable from U(-0.05, 0.05)
to the current value, and update h and ρ by adding a random variable from U(-0.1, 0.1) to the current
values. New values of h and ρ that lie outside the boundary [0,1] are reflected back.

In addition to the above local proposal distributions, we also use a “small world proposal” which
improves theoretical MCMC convergence [4]. In brief, with probability 0.33 in each iteration, we make a
longer-range proposal by compounding many local moves, where the number of compounded local moves
is draw uniformly from 1 to 20.

For each sampled values of (h, ρ, π,γ), we further obtain samples of τ and β̃ using the conditional
distributions P (τ |y, h, ρ, π,γ) and P (β̃|y, h, ρ, π,γ, τ) listed below:
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β̃γ |y, h, ρ, π,γ, τ ∼ MVN|γ|(ΩXT
γH−1y, τ−1Ω), (56)

β̃−γ |y, h, ρ, π,γ, τ ∼ δ0. (57)
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Afterwards, we sample u based the conditional distribution P (u|y, h, ρ, π,γ, τ, β̃):

u|y, h, ρ, π,γ, τ, β̃ ∼ MVNn(σ2
bKH−1(y −Xγβ̃γ), σ2

bKH−1τ−1). (58)

However, we do not sample u directly from the above n-dimensional multivariate normal distribution.
Instead, we sample UTu (and we never need to obtain u), as the conditional distribution of each element
in UTu is a normal:

UTu|y, h, ρ, π,γ, τ, β̃ ∼ MVNn(σ2
bD(σ2
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where the covariance matrix is diagonal.
For each sampled value of (β̃, u, τ), we obtain samples of PVE and PGE based on equations (13)

and (14).
When required (e.g. for evaluating RPG in simulation studies), in the special case K = XXT /p, we

also obtain the (approximate) posterior mean of α in the alternative model formulation (46)-(49). This
is achieved without sampling α in each iteration using the fact that the full conditional distribution of
α given other sampled values is
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which leads to the Rao-Blackwellised approximation for the posterior mean of α:
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where T is the total number of MCMC iterations, and the superscript (t) denotes the tth MCMC sample.
Notice that we only need to do the p dimensional matrix-vector multiplication once at the end.

When |γ| is large, the most time consuming part of our MCMC scheme for fitting BSLMM and BVSR
is the calculation of Ω. The per-iteration computation time of the above algorithm is comparable to that
of BVSR [3] with linear complexity in the number of individuals but quadratic complexity in |γ|. In
practice, to reduce the computation burden, we set a maximal value for |γ| (300 for simulations and the
two human data sets, 600 for the mouse data set). Setting the maximal value to a larger number (600)
in simulations improves results only subtly, even for scenarios where a large number of causal SNPs is
present.
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