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Text S1 Detailed Methods

GWAS Datasets

We used four GWAS data sets in the present study.
The first data set contains height measurements for 3925 Australian individuals [1]. We used the data

set for simulation and PVE estimation. The phenotypes were already regressed out of age and sex effects,
and were quantile normalized to a standard normal distribution afterwards [1]. A total of 294,831 SNPs
were available after stringent quality control [1]. We imputed missing SNPs using IMPUTE2 [2], and
further excluded five SNPs that have minor allele frequencies below 1% after imputation.

The second data set consists of blood lipid measurements for 1868 individuals from the Pharma-
cogenomics and Risk of Cardiovascular Disease (PARC) study, with experimental design and genotyping
procedures detailed in [3]. We used this data for PVE estimation. The individuals came from two study
groups: the Cholesterol and Pharmacogenetics (CAP) group [4] and the Pravastatin Inflammation/CRP
Evaluation (PRINCE) group [5]. The PRINCE study consists of two cohorts: one contains individu-
als with history of cardiovascular diseases (CVD) and the other contains individuals with no history of
CVD. From both study groups, we selected all 1868 individuals that have complete low-density lipoprotein
(LDL) subfraction measurements. We selected four different blood lipid measurements as phenotypes in
the present study: LDL, high-density lipoprotein (HDL), total cholesterol (TC) and triglycerides (TG).
Phenotypes were quantile-normalized to a standard normal distribution within each group, corrected
for covariates including BMI (body mass index), age, sex, and smoking status effects, and quantile-
normalized again [3]. Individuals were typed on two different SNP arrays (Illumina HumanHap300 and
HumanQuad610 bead chips, Illumina, San Diego, CA). We used all SNPs that appeared in either of the
arrays and we imputed missing genotypes using IMPUTE2 [2]. We obtained a total of 582,962 SNPs and
we used 555,601 polymorphic SNPs with minor allele frequency above 1% for analysis.

The third data set is from the Wellcome trust case control consortium (WTCCC) 1 study [6]. We
used this data set to assess phenotype prediction performance. The data set consists of about 14,000
cases of seven common diseases, including 1868 cases of bipolar disorder (BD), 1926 cases of coronary
artery disease (CAD), 1748 cases of Crohn’s disease (CD), 1952 cases of hypertension (HT), 1860 cases
rheumatoid arthritis (RA), 1963 cases of type 1 diabetes (T1D) and 1924 cases of type 2 diabetes (T2D),
as well as 2938 shared controls. We obtained quality controlled genotypes from WTCCC and we further
imputed missing genotypes using BIMBAM [7], which resulted in a total of 458,868 shared SNPs. All
polymorphic SNPs with minor allele frequency above 1% in the training data were used for prediction
(about 400,000 SNPs; depending on the disease and the split).

The fourth data set comes from a genetically heterogeneous stock of mice, consisting of 1904 indi-
viduals from 85 families, all descended from eight inbred progenitor strains [8]. We used this data set
to assess phenotype prediction performance of several methods. Multiple phenotype measurements are
available for the data set, and we selected three phenotypes among them: percentage of CD8+ cells (CD8,
n = 1410), mean corpuscular hemoglobin (MCH, n = 1580) and body mass index (BMI, n = 1828). We
selected these phenotypes because they were previously used for comparing prediction performance of
various methods [9–11], and they represent a wide range of narrow sense heritability: CD8 has a high
heritability, MCH has a median heritability and BMI has a low heritability [12]. All phenotypes were
already corrected for sex, age, body weight, season and year effects [8], and we further quantile normalized
the phenotypes to a standard normal distribution. A total of 12,226 autosomal SNPs were available for
all mice. For individuals with missing genotypes, we imputed missing values by the mean genotype of
that SNP in their family. All polymorphic SNPs with minor allele frequency above 1% in the training
data were used for prediction (about 10,000 SNPs; depending on the phenotype and the split).
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Simulations

We used genotypes from the human height data set [1] described above and simulated phenotypes from
the simple linear model (1) with different assumptions for the distribution of effect sizes β. We consider
two simulation scenarios where the true PVE is known and we simulated 20 independent sets of phenotype
data in each case.

Scenario I: the effect sizes of causal SNPs come from a normal distribution. We randomly chose a fixed
number of causal SNPs (10, 100, 1000, 10000) and simulated their effect sizes from a N(0, 1) distribution.
We drew the errors from a normal distribution with variance chosen to achieve a given PVE (0.2 and
0.6).

Scenario II: the effect sizes of causal SNPs come from a mixture of two normal distributions, such
that a small group of causal SNPs have additional effects. We first randomly chose a large number of
causal SNPs (10000), and among them, we further selected a small number of medium effect size SNPs
(10 or 100) and used what were left as small effect size SNPs (9990 or 9900). We simulated the small
effect sizes for all causal SNPs (10000) from a N(0, 1) distribution. Afterwards, we drew additional effect
sizes (in addition to the small effects already drawn) for those medium effect SNPs (10 or 100) from
a N(0, 1) distribution, and scaled these additional effect sizes further so that together they explained
a fixed proportion of genetic variance, or PGE (0.1 and 0.2, for 10 and 100 medium effect size SNPs,
respectively). Once we obtained the final effect sizes for all causal SNPs, we drew errors to achieve a
given PVE (0.2 and 0.6).

Assessing Prediction Performance in Simulations

MSPE and RPG

We assess prediction accuracy mainly using mean square prediction error (MSPE), and a rescaled version
of MSPE called relative predictive gain (RPG). The MSPE for predicting a future observation in the

simple linear model (1) depends on comparing an estimated value of β, β̂, the true value of β, and the
error variance τ , as follows:

MSPE(β̂;β, τ) := E(xT β̂ − y)2 (24)

= E((

p∑
i=1

xi(β̂i − βi))2) + τ−1 (25)

=

p∑
i=1

p∑
j=1

rij(β̂i − βi)(β̂j − βj) + τ−1 (26)

≈
∑

|i−j|≤20

sij(β̂i − βi)(β̂j − βj) + τ−1, (27)

where y is the phenotype for a future observation, x is the corresponding p-vector of genotypes, rij =
E(xixj) is the covariance between SNP i and j. In practice, we approximate rij with the sample co-
variance sij = 1

n

∑n
k=1 xikxjk, and we only consider sij for neighboring SNPs that satisfy |i − j| ≤ 20.

This is because linkage dis-equilibrium (LD) decays with distance and remote SNPs are approximately
independent with each other. The above definition of MSPE extends the definition in [13] to take into
account correlations among neighboring SNPs.

We denote MSPE0 as the MSPE obtained using only the mean of the phenotype (i.e. ȳ) for prediction,
and we define RPG as the rescaled version of MSPE following [13]:

RPG(β, β̂) :=
MSPE0 −MSPE(β̂;β, τ)

MSPE0 −MSPE(β;β, τ)
. (28)
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When applying these formulae for LMM or BSLMM note that we use estimates β̂ for β in (1), and
not for β̃ in (6). This ensures that the resulting predictions take account of both the sparse effects β and

the random effect u in (6). The way we obtain these estimates β̂ is detailed below.

Correlation

We also assess prediction accuracy using correlation. The correlation between the predicted value and
the true value for a future observation in the simple linear model (1) depends on β̂, β and τ as follows:

Cor(β̂;β, τ) := Cor(xT β̂, y) (29)

=
E((
∑p
i=1 xiβ̂i)(

∑p
j=1 xjβj))√

E((
∑p
i=1 xiβ̂i)

2)E((
∑p
j=1 xjβj)

2)/PVE(β, τ)
(30)

=
(
∑p
i=1

∑p
j=1 rij β̂iβj)

√
PVE(β, τ)√

(
∑p
i=1

∑p
j=1 rij β̂iβ̂j)(

∑p
i=1

∑p
j=1 rijβiβj)

(31)

≈
(
∑
|i−j|≤20 sij β̂iβj)

√
PVE(β, τ)√

(
∑
|i−j|≤20 sij β̂iβ̂j)(

∑
|i−j|≤20 sijβiβj)

. (32)

Again, when applying these formulae for LMM or BSLMM note that we use estimates β̂ for β in (1),
and not for β̃ in (6).

Details of BSLMM

Centering X and K

We assume that the genotypes in X have been measured on bi-allelic markers, and that the genotypes
at each marker are coded as 0, 1 or 2 copies of some reference allele. (For imputed genotypes we use
the posterior mean genotype [7].) It occasionally simplifies the algebra to assume that each column of X
is centered to have mean 0; since the results will be the same with or without centering, we make this
assumption throughout. It is also common to standardize the columns of X to have unit variance. In
contrast to centering, standardizing the columns will affect the results, and we do not standardize the
columns in our applications here, although all our methods could be applied with the matrix standardized
in this way. (Standardizing the columns of X corresponds to making an assumption that rarer variants
tend to have larger effects than common variants, and precisely that marker effect sizes tend to decay with
the inverse of the genotype variance; see [14, 15] for relevant discussion.) In summary, throughout this
paper Xij = (xij − x̄j) where xij is the number of copies of the reference allele at marker j in individual
i, and x̄j := (1/n)

∑
i xij .

To facilitate prior specification, in addition to centering the genotype matrix X, we also assume
that the relatedness matrix K is “centered”, in the sense that the random effects have mean zero:∑n
i=1 ui = 0. This holds automatically for K ∝ XXT , with X centered. More generally it can be

achieved by multiplying the relatedness matrix with a projection matrix on both sides: MKM, where
M = In − 1n(1Tn1n)−11Tn . The resulting transformed relatedness matrix is positive-semidefinite as long
as the original relatedness matrix is positive-semidefinite.
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Definition and derivation of expressions for h and ρ

We define h, ρ

h(π, σa, σb) :=
E(V(Xβ̃ + u))

E(V(Xβ̃ + u)) + τ−1
, (33)

ρ(π, σa, σb) :=
E(V(Xβ̃))

E(V(Xβ̃ + u))
, (34)

where the function V (x) is defined in equation 15, and the expectations are taken with respect to (β̃,u),
conditional on hyper parameters (σa, σb, π, τ). These conditional expectations are extensions of, and slight
simplifications of, the similar expression for h in [13]; the simplification comes from taking expectations
conditional on π instead of conditional on γ. These definitions of h and ρ are motivated by approximating
the expectations of PVE and PGE by the ratios of the expectations of the numerator and denominator.
Both h and ρ take values between 0 and 1 and serve as rough guides to the expectations of PVE and
PGE, respectively.

The expectations in the above expressions, conditional on hyper-parameters (σ2
a, σ

2
b , π, τ), can be

obtained as:

E(V(Xβ̃)|σ2
a, π, τ

−1) = E(

p∑
i=1

V(xiβ̃i)|σ2
a, π, τ

−1) = pπsaσ
2
aτ
−1, (35)

E(V(Xβ̃ + u)|σ2
a, σ

2
b , π, τ

−1) = E(

p∑
i=1

V(xiβ̃i) + V(u)|σ2
a, σ

2
b , π, τ

−1) = pπsaσ
2
aτ
−1 + sbσ

2
b τ
−1, (36)

where xi is the ith column of X, sa = 1
np

∑p
i=1

∑n
j=1 x

2
ij , sb = 1

n

∑n
i=1 kii, xij and kij are the ijth

elements of matrices X and K, respectively. The above derivation assumes centered genotypes and
relatedness matrix.

Plugging these approximations into the expressions (13) and (14) gives (16) and (17).

Induced Priors on σ2
a and σ2

b

Solving (16) and (17) for σ2
a and σ2

b as functions of h, ρ and π gives:

σ2
a =

hρ

(1− h)pπsa
, (37)

σ2
b =

h(1− ρ)

(1− h)sb
. (38)

The independent priors (18), (19), (12) for (h, ρ, π) induce a joint prior on (σa, σb, π):

p(σ2
a, σ

2
b , π) ∝ psasb

(pπsaσ2
a + sbσ2

b + 1)2(pπsaσ2
a + sbσ2

b )
, (39)

which is heavy tailed for (σ2
a, σ2

b ) marginally (i.e. tail has a polynomial decay), a feature desirable in
association studies [15]. The priors also have another nice property that the marker effect size variance
σ2
a tends to decrease as the proportion of markers with an effect (π) increases.

PVE Estimation with LMM, BVSR and BSLMM

We could estimate PVE using the posterior mean of the MCMC samples for all three models, and we do
so for both BVSR and BSLMM. For LMM, we follow previous studies [1] and use an approximation to
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the PVE. In particular, we consider the LMM defined by equations (6)-(7) with β̃ = 0, and we estimate
PVE by the ratio of expectations

ˆPVE =
sbσ̂

2
b

sbσ̂2
b + 1

, (40)

where σ̂2
b is the REML estimate for the variance component. This formula can be viewed as a general-

ization of the form used in [1], and is valid for any choice of centered relatedness matrix K.
To obtain the standard error of the above estimate, we compute the second derivative of the log

restricted likelihood function with respect to σ2
b [16] and evaluate it at σ̂2

b :

l′′r (σ̂2
b ) =

∂l2r
∂2σ2

b

|σ2
b=σ̂

2
b

=
1

2
trace(PKPK)− n− 2

2

2(yTPy)(yTPy)− (yTPy)2

yTPy
|σ2

b=σ̂
2
b
, (41)

where lr denotes the log restricted likelihood, H = σ2
bK+In and P = H−1−H−11n(1nH−11Tn )−11TnH−1.

Despite its complicated form, the second derivative can be easily and efficiently evaluated using recur-
sions in [16]. As the variance of σ̂2

b is asymptotically v(σ̂2
b ) = −1/l′′(σ̂2

b ), using the delta method, we

approximate the standard error of ˆPVE by

se( ˆPVE) ≈ sb
(sbσ̂2

b + 1)2

√
v(σ̂2

b ). (42)

As a check on correctness, we also used the posterior mean for PVE obtained from LMM-Bayes to
estimate PVE. This gave almost identical results in all cases considered here and therefore only results
from LMM are presented.

Phenotype Prediction with LMM, BVSR and BSLMM

Real Data

In the real data, we can perform prediction by estimating both the sparse effects (µ, β̃) and the random
effects (u) in (6) from the training set, and use these to predict phenotypes in the test set.

Let µ̂o,
ˆ̃
βo and ûo denote estimates for the sparse and random effects obtained from the observed

(training) sample. For BSLMM and BVSR these estimates are the posterior means for these parameters,
estimated from MCMC samples (for BVSR ûo ≡ 0). For LMM ûo is obtained as the conditional posterior
mean of uo given the REML estimate for σ2

b (i.e. BLUP).
We then obtain predictions for a future (test) sample as follows. For a general relatedness matrix

K, we assume that the random effects for the observed and future samples follow a multivariate normal
distribution (

uo
uf

)
∼ MVNno+nf

(

(
0
0

)
,

(
Koo Kof

Kfo Kff

)
), (43)

where no and nf are the sample size for observed (training) and future (test) data, respectively, and the
joint covariance matrix is centered based on training data. Standard multivariate normal theory gives
the conditional distribution

uf |uo ∼ MVNnf
(KfoK

−1
oo uo,Kff −KfoK

−1
oo Kof ). (44)

We use the conditional mean as an estimate for uf and thus the predicted phenotypes for future
observations are

ŷf = 1nf
µ̂o + Xf

ˆ̃
βo + KfoK

−1
oo ûo, (45)

where Xf is the genotype matrix for the test data, with each column centered using the mean from the
training data.
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Simulated Data

In the simulated data we use RPG and correlation to assess prediction accuracy. To compute RPG and
correlation we need to obtain estimates for β in the simple linear model (1). To do this, in the special
case when the relatedness matrix K = 1

pXXT , we rewrite the model (6) as

y = 1nµ+ Xβ̃ + Xα + ε, (46)

ε ∼ MVNn(0, τ−1In), (47)

β̃i ∼ πN(0, σ2
aτ
−1) + (1− π)δ0, (48)

αi ∼ N(0, σ2
b/(pτ)), (49)

where we can think of the p-vector α as representing the “small” effect sizes present at every locus. The
special case of π = 0 (β̃ ≡ 0) gives LMM, and the special case of σ2

b = 0 (α ≡ 0) gives BVSR. Note that

α + β̃ = β, so summing estimates of α and β̃ yields an estimate for β in (1).
For LMM we estimate α by its conditional expectation

α̂ =
σ̂2
b

p
XT (σ̂2

bK + In)−1y, (50)

where σ̂2
b is the REML estimate of the variance component in the observed data. Since β̃ ≡ 0 in LMM,

this estimate for α provides the required estimate for β in (1).
For BVSR, we use the posterior mean of β̃ (since α ≡ 0).
For BSLMM, we use Rao-Blackwellisation to obtain an approximation to the posterior mean for α

(Text S2), and then add this to the (approximate) posterior mean for β̃ obtained from the MCMC sampler
to obtain an approximation for the posterior mean of β in (1).

Other Methods

1. LMM: We fit LMM using the GEMMA algorithm [16].

2. BVSR: We fit BVSR by fixing ρ = 1 in BSLMM using our software. This gives slightly better
results, and is faster than the BVSR software piMASS (version 0.90) [13], in all examples considered
here.

3. LMM-Bayes: We fit this by fixing ρ = 0 in BSLMM using our software.

4. Bayesian Lasso: This [17] assumes a double-exponential prior for each coefficient βi in (1):

βi|λ ∼ DE(0, λ−1), λ2 ∼ Gamma(κ1, κ2), τ−1 ∼ IG(κ3, κ4), (51)

where DE denotes the double exponential (Laplace) distribution with mean 0 and scale parameter
λ−1, and Gamma denotes a Gamma distribution with shape and rate parameters. We set κ1 =
0.55, κ2 = 10−6, κ3 = 1/2 and κ4 = 1/2 following previous studies [11, 18]. We use a conjugate
Gamma prior for λ2 as in [17] instead of a Beta prior for λ/100 as in [11]. We used the R package
BLR [11] to sample from the posterior distribution of β.

5. BayesA-Flex: This assumes a scaled t-distribution for each coefficient βi in (1):

βi|σ ∼ t(0, ν, σ2), σ2 ∼ IG(κ1, κ2), τ−1 ∼ IG(κ3, κ4), (52)

where IG stands for the inverse gamma distribution. Following previous studies, we set the degree
of freedom parameter ν to 4 [19–21] and set κ3 = 1/2 and κ4 = 1/2 [11]. We also consider the
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posterior distribution where κ1 → 0 and κ2 → 0. The above model is similar to BayesA [19], but
with a key difference in the way the scaling parameter σ2 is treated: BayesA fixes σ2 to some pre-
specified value, whereas here we specify a prior for σ2 and allow it to be estimated from the data
(and hence the name “BayesA-Flex”). Using BayesA in this data set gives poor results [10] (and
data not shown); but estimating the scaling parameter greatly improves prediction performance.
We modified the R package BLR [11] to obtain posterior samples from this model. The modified
code is freely available online.

6. BayesCπ: we fit this using the online software GenSel [21].

7. BSLMM-EB: we fit this using our BSLMM software, fixing σ2
b to the REML estimate σ̂2

b from the
null model (i.e. LMM). This approximation avoids updating σ2

b in each iteration of the MCMC, and
is one of the several approximation strategies used by previous studies to alleviate the computation
burden of models similar to BSLMM [9,22]. Intuitively, by fixing the variance component to its null
estimate, BSLMM-EB discourages the inclusion of large effect SNPs into the sparse effects term and
risks underestimating their effect sizes. Therefore, this approximation may reduce the prediction
performance of BSLMM, especially when there are large effect SNPs. We confirm this in the real
data set.

For all MCMC based methods except for BayesCπ, we run 2.1 million iterations with the first 0.1 million
iterations as burn-in steps. For BayesCπ, due to web server restriction, we run 1.1 million iterations with
the first 0.1 million iterations as burn-in.
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