
Supplementary Information

1 Supplementary Figures

(a) Statistical power (p = 2.6× 10−8) (b) Statistical power (p = 4.0× 10−6)

Supplementary Figure 1: Statistical power comparison between GEMMA (red) and EMMAX (blue)
using simulation with the HMDP data set, at two different genome-wide significance thresholds.
The y axis shows how power varies with SNP effect size (x axis).
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(a) Full Rank vs Low Rank (HMDP) (b) Full Rank vs Low Rank (WTCCC)

Supplementary Figure 2: Comparison of − log10 p values obtained from linear mixed models using
low-rank matrices, with those from the usual full-rank matrix. a) shows p values computed from
1,885,197 markers for HDL measurements in the HMDP data set, by either a linear model, linear
mixed models using low-rank relatedness matrices constructed from the top 10% (10) or 50% (50)
eigenvectors, or linear mixed model using the full-rank relatedness matrix. b) shows p values
computed from 442,001 markers for Crohn’s disease states in the WTCCC data set, by either a
linear model, linear mixed models using low-rank relatedness matrices constructed from the top
10% (469) or 50% (2343) eigenvectors, or linear mixed model using the full-rank relatedness matrix.
Black line shows the diagonal line. nev, number of eigenvectors used; LM, linear model; LMM,
linear mixed model.
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2 Supplementary Table

Supplementary Table 1: Comparison of genomic control inflation factors obtained with linear mixed
models using relatedness matrices constructed from the top 0% (linear model), 10%, 50% and 100%
(full-rank matrix) eigenvectors of the usual relatedness matrix, for both HMDP and WTCCC data
sets. EVs, eigenvectors.

Data Set
Genomic Control Inflation Factor

Linear Model LMM (10% EVs) LMM(50% EVs) LMM(Full)

HMDP, HDL-C 26.392 7.575 3.879 0.955
WTCCC, CD 1.174 1.070 1.030 1.012

3

Nature Genetics: doi:10.1038/ng.2310



3 Supplementary Note

3.1 Genome-wide Efficient Mixed Model Association, More Details

3.1.1 Derivation of the target optimization functions

If λ is known, the log-likelihood is maximized at:(
α̂

β̂

)
= ((W,x)TH−1(W,x))−1(W,x)TH−1y,

τ̂ =
n

(y −Wα̂− xβ̂)TH−1(y −Wα̂− xβ̂)
=

n

yTPxy
.

The last equation uses the property PxHPx = Px. This can be derived by noticing Px =

Mx(MxHMx)−Mx, where Mx = In − (W,x)((W,x)T (W,x))−1(W,x)T and − denotes gen-

eralized inverse.

Similarly, the log-restricted likelihood is maximized at

τ̂ =
n− c− 1

yTPxy
.

Therefore, finding MLE and REML estimates is equivalent to optimizing the following functions

with respect to λ:

l(λ) =
n

2
log(

n

2π
)− n

2
− 1

2
log |H| − n

2
log(yTPxy),

lr(λ) =
n− c− 1

2
log(

n− c− 1

2π
)− n− c− 1

2
+

1

2
log |(W,x)T (W,x)|

− 1

2
log |H| − 1

2
log |(W,x)TH−1(W,x)| − n− c− 1

2
log(yTPxy).

3.1.2 Numeric optimization details

Following EMMA1, we consider λ’s ranging from 1× 10−5 (corresponding to almost pure environ-

mental effect) to 1 × 105 (corresponding to almost pure genetic effect). We use Brent’s method

on the first derivative of the target functions, initialized with the two boundary values, to provide

an initial value that is close to a root with relative error of 1 × 10−1. We then follow this with

Newton-Raphson’s method, taking advantage of the second derivative to achieve a relative error

of 1 × 10−5. This search strategy combines the stability of Brent’s method with the efficiency of

Newton-Raphson’s method. In the implemented software, we also provide the option of dividing

the log-scale evaluation interval into equally spaced regions1. Brent’s method followed by Newton-

Raphson’s method can be carried out for optimization in each region where the first derivatives

change sign. This dividing strategy with ten regions yields identical results, takes less than five

minutes longer for both data sets, and is expected to find the maxima in the evaluation interval
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more easily when the target functions are not well behaved.

3.1.3 Matrix calculus properties

The derivation of the first and second derivatives for both target functions uses a few matrix calculus

properties:

∂ log |H|
∂λ

= vecT (H−1)vec(G) = trace(H−1G),

∂vec(Px)

∂λ
=
∂vec(Mx(MxHMx)−Mx)

∂λ
= −Px ⊗Pxvec(G) = −vec(PxGPx),

∂vecT (H−1)

∂λ
= −H−1 ⊗H−1vec(G) = −vec(H−1GH−1),

∂vec(PxGPx)

∂λ
= (In ⊗PxG + PxG⊗ In)

∂vec(Px)

∂λ
= −2vec(PxGPxGPx),

where ⊗ denotes Kronecker product and vec denotes matrix vectorization (by stacking columns).

3.1.4 Simplification of the trace term and the vector-matrix-vector product term

For the trace term, we notice:

trace(H−1G) = trace(H−1 (H− In)

λ
) =

n− trace(H−1)

λ
,

trace(H−1GH−1G) = trace(H−1 (H− In)

λ
H−1 (H− In)

λ
) =

n+ trace(H−1H−1)− 2trace(H−1)

λ2
,

trace(PxG) = trace(Px
(H− In)

λ
) =

n− c− 1− trace(Px)

λ
,

trace(PxGPxG) = trace(Px
(H− In)

λ
Px

(H− In)

λ
) =

n− c− 1 + trace(PxPx)− 2trace(Px)

λ2
.

The last two equations use the property trace(PxH) = trace(Mx(MxHMx)−MxH) = n− c− 1.

For the vector-matrix-vector product term, we notice:

yTPxGPxy =
yTPxy − yTPxPxy

λ
,

yTPxGPxGPxy =
yTPxy + yTPxPxPxy − 2yTPxPxy

λ2
.

3.1.5 Recursions for the trace term and the vector-matrix-vector product term

With blockwise matrix inversion we have:

Pi = Pi−1 −Pi−1wi(w
T
i Pi−1wi)

−1wT
i Pi−1.
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This leads to a recursion for the trace terms:

trace(Pi) = trace(Pi−1)− (wT
i Pi−1Pi−1wi)(w

T
i Pi−1wi)

−1,

trace(PiPi) = trace(Pi−1Pi−1) + (wT
i Pi−1Pi−1wi)

2(wT
i Pi−1wi)

−2

− 2(wT
i Pi−1Pi−1Pi−1wi)(w

T
i Pi−1wi)

−1,

and a recursion for the vector-matrix-vector product terms, for any vectors a, b of the right size:

aTPib = aTPi−1b− (aTPi−1wi)(b
TPi−1wi)(w

T
i Pi−1wi)

−1,

aTPiPib = aTPi−1Pi−1b

+ (aTPi−1wi)(b
TPi−1wi)(w

T
i Pi−1Pi−1wi)(w

T
i Pi−1wi)

−2

− (aTPi−1wi)(b
TPi−1Pi−1wi)(w

T
i Pi−1wi)

−1

− (bTPi−1wi)(a
TPi−1Pi−1wi)(w

T
i Pi−1wi)

−1,

aTPiPiPib = aTPi−1Pi−1Pi−1b

− (aTPi−1wi)(b
TPi−1wi)(w

T
i Pi−1Pi−1wi)

2(wT
i Pi−1wi)

−3

− (aTPi−1wi)(b
TPi−1Pi−1Pi−1wi)(w

T
i Pi−1wi)

−1

− (bTPi−1wi)(a
TPi−1Pi−1Pi−1wi)(w

T
i Pi−1wi)

−1

− (aTPi−1Pi−1wi)(b
TPi−1Pi−1wi)(w

T
i Pi−1wi)

−1

+ (aTPi−1wi)(b
TPi−1Pi−1wi)(w

T
i Pi−1Pi−1wi)(w

T
i Pi−1wi)

−2

+ (bTPi−1wi)(a
TPi−1Pi−1wi)(w

T
i Pi−1Pi−1wi)(w

T
i Pi−1wi)

−2

+ (aTPi−1wi)(b
TPi−1wi)(w

T
i Pi−1Pi−1Pi−1wi)(w

T
i Pi−1wi)

−2.

Note that each recursion only requires a few scalar multiplications and does not depend on the

number of individuals, as each vector-matrix-vector product in the form of aTPib, aTPiPib or

aTPiPiPib is a scalar.

3.1.6 Test statistics and p values

To test the null hypothesis β = 0, we obtain the likelihood ratio test statistic with MLE estimates

and the Wald test statistic with the REML estimate as suggested2,1:

Dlrt = 2 log
l1(λ̂1)

l0(λ̂0)
,

FWald =
β̂2

V (β̂)
.
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where l1 and l0 are the likelihood functions for the null and the alternative models, respec-

tively; λ̂0 and λ̂1 are the MLE estimates for the null and the alternative models, respectively;

β̂ = (xTPc(λ̂r)x)−1(xTPc(λ̂r)y) is the estimate for β obtained using the REML estimate λ̂r in

the alternative model; and V (β̂) = (n− c− 1)−1(xTPc(λ̂r)x)−1(yTPx(λ̂r)y) is the variance for β̂.

Under the null hypothesis the likelihood ratio test statistic Dlrt and the Wald test statistics FWald

come from a χ2(1) and a F (1, n − c − 1) distribution respectively, and p values can be calculated

accordingly.

3.1.7 Missing data

We note that the tricks used in GEMMA rely on having complete or imputed genotype data at each

SNP. That is, unlike EMMA, which, when testing a particular SNP, can simply ignore individuals

with missing genotype data at that SNP, GEMMA requires the user to instead impute all missing

genotypes before association testing. Arguably this imputation approach is preferable in any case,

since it can improve power to detect associations3. In the current implementation of GEMMA,

missing genotypes are required to be imputed first. Otherwise, any SNPs with missingness > 5%

will not be analyzed, and other missing genotypes will simply be replaced with the mean genotype

of that SNP.

3.2 Genotype and Phenotype Data, Details

We analyzed two data sets, one for quantitative traits from mouse and one for binary disease traits

from human.

The mouse data set contains measurements of HDL levels for the Hybrid Mouse Diversity Panel

(HMDP)4. Both phenotypes and genotypes are obtained from http://mouse.cs.ucla.edu/. A

total of 99 mouse strains (29 classical inbred strains and 70 recombinant inbred strains) and 681

animals with overlapping genotype and phenotype recodes were used. A total of fully imputed

3,918,755 SNPs were used to obtain the identity by state (IBS) matrix as estimates of relatedness5,4,

and a total of 1,885,197 polymorphic SNPs were used for analysis. As in4, we applied a linear mixed

model with an intercept term and tested each SNP in turn (as a fixed effect), without controlling

for any other covariates. Following a reviewer’s suggestion we also repeated this analysis, but

controlling for the top SNP (NES13033708) as a fixed effect in addition to an intercept; comparisons

between the methods remained qualitatively similar (data not shown).

The human data set contains population controls and cases with Crohn’s diseases from the

WTCCC study6. Quality controlled genotypes were obtained from WTCCC and missing geno-

types were imputed with BIMBAM3. 4686 individuals (1748 cases and 2938 controls) and a total

of 442,001 SNPs were used for analysis. The Balding-Nichols matrix was used as estimates of

relatedness5 and binary variables were treated as quantitative traits as suggested3,5. As in5 we
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applied a linear mixed model with an intercept term and tested each SNP in turn (as a fixed effect),

without controlling for any other covariates.

3.3 Supplementary Results

3.3.1 Power simulation

We performed a power comparison between GEMMA and EMMAX using simulations similar to

ref7, in the HMDP data set. (We did not perform comparisons on the WTCCC data set because the

empirical p value comparisons show that EMMAX produces almost identical results to GEMMA

in this case.)

For the power simulation we simulated phenotypes by adding effects to the original phenotype

observations as in “Scheme 1” from ref7. Specifically, we first identified polymorphic SNPs unasso-

ciated with the original phenotype (exact Wald test p value > 0.05). We ordered the 990,841 SNPs

satisfying this criteria by their genomic location, and selected from them 10,000 evenly spaced

SNPs to act as causal SNPs. For each causal SNP, we specified its effect size so that it explained a

particular percentage of the phenotypic variance (proportion of variance explained, or PVE), and

the effect was added back to the original phenotype to form the new simulated phenotype. For

each pre-specified PVE (ranged from 2% to 20%), we simulated 10000 sets of phenotype, one for

each causal SNP, and calculated p values for each SNP-phenotype pair. We calculated statistical

power as the proportion of (Wald test) p values exceeding the genome-wide significance level, either

at the conventional 0.05 level after Bonferroni correction (p = 2.6 × 10−8), or at a p value known

to achieve the same family-wise error rate in the HMDP panel (p = 4.0× 10−6)4.

Supplementary Figure 1 shows the genome-wide statistical power of GEMMA versus EMMAX

in the HMDP data set, at two different genome-wide significance p values, for SNPs with different

effect sizes. The results suggest that GEMMA can be several times more powerful than EMMAX

for SNPs with various effect sizes in this case.

3.3.2 Effects of modifying relatedness matrix

We explored the effects of using a low-rank relatedness matrix by computing p values from linear

mixed models with different relatedness matrices. In particular we considered replacing the full

relatedness matrix G with a rank r approximation of the form Ĝr =
∑r

k=1 δkuku
T
k , where δk are the

eigenvalues of G (ordered to be decreasing) and uk are the corresponding eigenvectors. Standard

theory ensures that Ĝr is the best rank r approximation to G in Frobenius norm.

We considered the relatedness matrices Ĝ(r) that corresponded to using either the top 0%,

10%, 50% or 100% eigenvectors of G. Note that 0% corresponds to the linear model, and 100%

corresponds to the LMM with the usual relatedness matrix G. Supplementary Figure 2 shows

comparison of p values, and Supplementary Table 1 shows comparison of genomic control inflation
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factors, obtained with different relatedness matrices in both HMDP and WTCCC data sets. The

results show that, compared with using G, using a lower-rank relatedness matrix can cause much

larger changes in p values than approximation methods such as EMMAX (Figure 1). Moreover, the

genomic control inflation factors also suggest that, for these data sets, using a lower-rank relatedness

matrix compromises the ability of the linear mixed model to control for sample structure.
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