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Linear mixed models have attracted considerable attention 
recently as a powerful and effective tool for accounting for 
population stratification and relatedness in genetic association 
tests. However, existing methods for exact computation of 
standard test statistics are computationally impractical for even 
moderate-sized genome-wide association studies. To address 
this issue, several approximate methods have been proposed. 
Here, we present an efficient exact method, which we refer to 
as genome-wide efficient mixed-model association (GEMMA), 
that makes approximations unnecessary in many contexts. This 
method is approximately n times faster than the widely used 
exact method known as efficient mixed-model association 
(EMMA), where n is the sample size, making exact genome-
wide association analysis computationally practical for large 
numbers of individuals.

There is an increasing interest in using linear mixed models (LMMs, 
also known as mixed linear models (MLMs)) to test for association 
in genome-wide association studies (GWAS) because of their dem-
onstrated effectiveness in accounting for relatedness among samples 
and in controlling for population stratification and other confounding 
factors1–7. However, these models present substantial computational 
challenges. For example, at the time that this work was submitted 
for publication, the most efficient algorithm for effectively com-
puting exact association test statistics (either the Wald test or the  
likelihood-ratio test) implemented in the EMMA software3 had a per-
SNP computation time that increased with the cube of the number 
of individuals (n). As a result, an average-sized GWAS including a 
few thousand individuals and half a million SNPs would take years 
of central processing unit (CPU) time to analyze1,7. While this paper 
was in review, Lippert et al.8 also published an efficient algorithm for 
this model, implemented in the FaST-LMM software; the relationship 
between this algorithm and ours is discussed.

Several approximation methods have been proposed to make 
genome-wide analysis using linear mixed models possible. Probably 
the simplest and fastest of these approximations, genome-wide rapid 
association using mixed model and regression (GRAMMAR) imple-
mented in the GenABEL software9 first estimates the residuals from 
the LMM under the null model (no SNP effect) and then treats these 
residuals as phenotypes for further genome-wide analysis by a standard 

linear model10. This substantially reduces per-SNP computation time, 
making it linear with respect to the number of individuals included. 
More recently, two more sophisticated approximate approaches have 
been suggested. Zhang et al.7 use population parameters previously 
determined (P3D), which avoids repeatedly estimating variance com-
ponents when performing each test by simply using the pre-estimated 
variance components from the null model; their method is imple-
mented in the TASSEL software. Kang et al.1 also avoid repeatedly 
estimating variance components by a slightly different strategy, which 
keeps the heritability estimated from the null model fixed when test-
ing individual SNPs. Their approach is implemented in the EMMA 
eXpedited (EMMAX) software. (This approximation and related ideas 
were also considered by previous authors10,11.) Both approximations 
have per-SNP computation time that increases quadratically with the 
number of individuals, which makes them practical on a single desktop 
computer for GWAS involving thousands of individuals.

Although in some settings the approximate methods provide results 
almost identical to those from the exact method1,7, this is not gua
ranteed in general, and in practice it is hard to know how accurate the 
approximations will be without running an exact calculation. One pos-
sible consequence of inaccuracy in the approximation could be a reduc-
tion in power relative to exact methods. For these reasons, the ability to 
perform exact calculations remains of interest. Here, we present a new, 
more efficient method for exact calculations that provides numerically 
identical results to EMMA (exact Wald or likelihood-ratio test statistics) 
but is roughly n times faster (computation time per SNP, when using the 
usual genome-wide relatedness matrix, increases quadratically with the 
number of individuals, with a run time similar to that of EMMAX). This 
makes exact calculations feasible for large GWAS, thereby obviating the 
need for approximate methods in most common settings.

RESULTS
The method and its computational complexity are described in 
detail and derived in the Online Methods. Briefly, the method 
requires complete or imputed genotype data12,13 for all SNPs and 
involves only one eigen decomposition of the relatedness matrix 
at the beginning (computational complexity of O(n3), where O is 
the big O notation14). For each SNP tested, it effectively replaces 
the expensive additional eigen-decomposition step in EMMA 
with one matrix-vector multiplication (computational complexity  
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of O(n2)). After this, as in EMMA, each iteration of the following 
optimization step requires inexpensive operations (complexity of 
O(n)) to evaluate both first and second derivatives of the target func-
tions. We refer to our method as genome-wide efficient mixed-model 
association (GEMMA) because it builds on EMMA and facilitates its 
genome-wide application.

We implemented our method and compared the analysis results 
with those obtained using the exact method, EMMA, and the approxi-
mation methods, EMMAX and GRAMMAR, using two examples: a 
mouse GWAS for high-density lipoprotein–cholesterol (HDL-C) levels  
from the Hybrid Mouse Diversity Panel (HMDP)15 and a human 
GWAS for Crohn’s disease from the Wellcome Trust Case Control 
Consortium (WTCCC)16. The size of this second study makes it com-
putationally impractical to analyze it with EMMA3. The computational 
complexity for the four methods and the CPU time for the analysis of 
the two data sets on a single desktop CPU are summarized in Table 1.  
We also include the results obtained with the recently published FaST-
LMM8, which can produce identical P values to those generated by 
EMMA and GEMMA in the same time complexity as GEMMA. As 
expected, GEMMA was comparable in speed to EMMAX, completing 
the larger (WTCCC) example in less than 4 h.

To verify the correctness of our algorithm and implementation, we 
first validated it by comparing the P values calculated by GEMMA 
with those from EMMA on a subset of SNPs from both example 
data sets. For all SNPs examined, the P values from the two methods 
matched exactly (Wald test results shown in Fig. 1a,b; likelihood-ratio 
test results not shown).

Because GEMMA provides exact computations in essentially the same 
time as EMMAX, the accuracy of the approximations in EMMAX and 
other methods may seem irrelevant. However, in some settings and in 
particular for mixed models with more than one random effect (vari-
ance component), the computational trick used by GEMMA does not 
apply, and approximations along the lines of EMMAX may remain nec-
essary. For this reason, the accuracy of different approximation methods 
remains of some interest, and we therefore present a comparison between 
the Wald test P values from GEMMA, EMMAX and GRAMMAR across 
the genome for both the HMDP and WTCCC data sets.

The HMDP GWAS represents a situation where approximation 
methods such as EMMAX or GRAMMAR may yield inaccurate test 
statistics. In particular, because individuals in the data set are closely 
related and because the strongly associated SNPs contribute to a signifi-
cant proportion of phenotypic variation in HDL-C13, using estimates of 
variance components or fitted residuals from the null model for testing 

might be expected to yield conservative P val-
ues, potentially leading to a loss of power. Our 
empirical comparison (Fig. 1c) confirms this: 
approximation by EMMAX led to systematic 
and appreciable underestimation of the most 
significant P values (by almost two orders 
of magnitude), whereas approximation by 
GRAMMAR led to marked underestimation 
of all P values. Indeed, in contrast to the exact 
P values, no P values generated by EMMAX 
were significant at the conventional P = 0.05 
level after Bonferroni correction, and no  
P values generated by GRAMMAR were sig-
nificant even before Bonferroni correction. 
The fact that the exact P values for the most 
significant results are substantially more sig-
nificant than the approximate P values from 
EMMAX suggests that, in this type of setting, 

the exact P values may produce a more powerful test, and simulation 
results confirm this (Supplementary Fig. 1).

In contrast, the WTCCC example represents a very different situ-
ation, where the approximation methods might be expected to yield 
accurate test statistics. This is because there is relatively little popu-
lation stratification in these data (the individuals are all from the 
UK, with the relatedness matrix approximately diagonal), and the 
effect sizes of the most strongly associated SNPs for Crohn’s disease 
are small compared with the effect sizes in the HMDP data15. Both 
conditions favor the approximation assumptions in EMMAX and 
GRAMMAR. Empirical comparisons (Fig. 1d) showed that, for this 
particular data set, the P values from EMMAX differed only negligibly 
from the exact values. However, the P values from GRAMMAR still 
departed noticeably from the exact values.

Table 1  Performance of different methods for GWAS with the linear mixed model

Methods Time complexitya

Computing time

HDL-Cb Crohn’s diseasec

Exact methods GEMMA O(mn2 + cn2 + pn2 + pt2c2n) 33 min 3.3 h

EMMA O(mn2 + pmn2 + pt2n) ~9 d ~27 years

FaST-LMMd O(mn2 + cn2 + pn2 + pt1c2n) 6.8 h 6.2 h

Approximate methods EMMAX O(mn2 + t2n + pn2) 44 min 6.4 h

GRAMMAR O(mn2 + t2n + pn) 1.6 min 12 min

All computing was performed on a single core of an Intel Xeon L5420 2.50 GHz CPU. The time for the EMMA method 
is projected from a selection of 10,000 and 100 genetic markers in the HMDP and WTCCC data sets, respectively. 
Note that EMMA was implemented in R, whereas others were implemented in C. A C implementation of EMMA could 
be a few times faster. p, the number of genetic markers; n, the number of individuals; m, the number of strains (equal 
to n for human studies); c, the number of covariates (fixed effects) in addition to the genotypes. t1 and t2 are the 
number of optimization iterations required for Brent’s method (super-linear rate of convergence) and the Newton-
Raphson method (quadratic rate of convergence), respectively. Note that t2 is expected to be smaller than t1.
aComplexities are given assuming the usual genome-wide relatedness matrix, which has rank n. In the current implementation 
of various methods except EMMA, the first terms are actually n3, but it would in principle be straightforward to convert them 
to mn2. bm = 99, n = 681, and p = 1,885,197. cm = n = 4,686, and p = 442,001. dThese results are for the algorithm in 
FaST-LMM that uses the standard full-rank relatedness matrix, which produces P values that are identical to those generated in 
GEMMA and EMMA.
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Figure 1  Comparison of GEMMA with EMMA, EMMAX and GRAMMAR on 
HMDP HDL-C data and WTCCC Crohn’s disease data. (a,b) Comparison of 
−log10 P values obtained from GEMMA with those from EMMA. P values 
are shown for the top 10,000 markers (a) and the top 100 markers (b). 
(c,d) Comparison of −log10 P values obtained from GEMMA with those 
from EMMAX and GRAMMAR. P values are shown for all markers: 1.9 
million (c) and 442,000 (d).
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Taken together, these results confirm that approximation by EMMAX 
is appreciably more accurate than with GRAMMAR, even in cases such 
as the WTCCC data where the sample structure is subtle. The com-
parisons also show that the accuracy of EMMAX approximation can 
vary from case to case. Consequently, the potential gain in power from 
performing exact instead of approximate tests will also vary among data 
sets. For the HMDP data set, the potential gain in power from the exact 
calculations seems considerable, and this is confirmed by simulations 
(Supplementary Fig. 1). For the WTCCC Crohn’s disease data set, the 
power gain is negligible, and, as noted in ref. 1, only a small gain in 
power is generally expected at SNPs with small effect sizes. Of course, 
one advantage of being able to perform the exact tests is that it obvi-
ates the need to consider which approximations work best under which 
circumstances or to consider ways in which the approximations could 
be improved. We also note that the computational methods employed 
here can be applied in other contexts, including, for example, the com-
bined variable selection plus random effects model that has been widely 
studied for phenotype and breeding value prediction17.

DISCUSSION
In summary, we have presented an efficient method for computing 
exact values of standard test statistics in linear mixed models. This 
method is comparable in speed to approximation methods such as 
EMMAX but yields exact test statistics. By analyzing two example 
data sets, we demonstrate the use of our method and show that the 
approximation methods can yield inaccurate P values when the sample  
structure is strong and/or when the marker effect size is large. We also 
find that approximation by EMMAX is more accurate than approxi-
mation by GRAMMAR across the genome (a comparison made pos-
sible only by the availability of an efficient exact method).

Lippert et al.8 also recently published an efficient method for com-
puting likelihoods for LMMs that, similar to our method, requires 
only one singular value decomposition of the relatedness matrix. 
They use this method in combination with Brent’s optimization algo-
rithm to produce an algorithm for computing exact test statistics 
with effectively the same computational complexity as GEMMA: 
O(mn2 + cn2 + pn2 + ptc2n), where n is the number of individuals, 
m is the number of strains (equal to n for human studies), p is the 
number of genetic markers, c is the number of covariates in addi-
tion to the genotypes and t is the number of optimization iterations 
required for convergence (Table 1). (Lippert et al.8 also suggest a 
further innovation in which a low-rank relatedness matrix is used in 
place of the usual relatedness matrix computed from all SNPs across 
the genome, which produces an algorithm that is linear with respect 
to n and therefore is feasible for very large GWAS samples containing 
more than 100,000 individuals; however, changing the relatedness 
matrix in this way changes the resulting P values appreciably, and in 
this sense this linear complexity algorithm is not directly comparable 
with either GEMMA or EMMA.) The main additional contribution 
of our work here, beyond that described by Lippert et al., is that we 
provide and demonstrate the use of efficient methods for the evalu-
ation of not only the likelihood but also both its first and second 
derivatives. This allows use of the Newton-Raphson optimization 
method, which has better theoretical convergence properties than 
Brent’s algorithm (quadratic versus super-linear, respectively), poten-
tially reducing per-SNP computation time by reducing the number of 
iterations (t) required for convergence. The practical effect of this is 
expected to depend on the sample size n. Examining the theoretical 
computational complexity, if p is large (and assuming the simplest 
case with no additional covariates, such that c = 1), the per-SNP com-
plexity of the algorithms is O(n2 + tn). Thus, if n is large, the n2 term 

will dominate, and the number of iterations will have only a small 
effect on computation time; if n is moderate, then the number of 
iterations may have a more substantial contribution. Consistent with  
this idea, we found that GEMMA was 12 times faster than the algo-
rithm developed by Lippert et al. when implemented in FaST-LMM 
for the smaller HMDP data set (33 min versus 6.8 h, respectively) 
but was only 2 times faster for the WTCCC data set (3.3 h versus 
6.2 h, respectively). It is possible that implementation issues, which 
are important but conceptually less fundamental, also contribute to 
differences in speed. In addition to allowing slightly faster computa-
tional speed, which might be considered a minor issue, by providing 
efficient methods to compute derivatives, our work here lays the 
foundation for similar efficient analyses for LMMs with multivariate 
phenotypes18, where multidimensional optimization is required, and 
evaluating the target functions alone is unlikely to suffice.

Here, we have focused on computations using the usual relat-
edness matrix computed from all SNPs across the genome whose 
rank r is typically equal to the number of individuals n. However, 
as noted by Lippert et al.8, using a lower-rank relatedness matrix 
reduces computing time (computational complexity of the singular 
value decomposition can scale with nr2) and, in some cases, memory 
requirements (for example, Lippert et al.8 suggest using a relatedness 
matrix based on only a few thousand SNPs; this is advantageous in 
that the required singular value decompositions can be completed 
without computing the n × n relatedness matrix itself). Using the 
usual full-rank relatedness matrix, our current implementation of 
GEMMA can handle approximately 23,000 individuals on a machine 
with 64 GB of memory (in double precision); using a lower-rank relat-
edness matrix, much larger problems can be addressed. However, we 
note that changing the relatedness matrix can produce much larger 
changes in P values than, for example, using EMMAX versus exact 
calculations (Supplementary Fig. 2), and, for both the HMDP and 
WTCCC data sets, using a lower-rank relatedness matrix seems to 
compromise the ability of the LMM to control for sample structure 
(Supplementary Table 1). Thus, choice of relatedness matrix could 
affect statistical efficiency (both power and correct control of type I 
error due to stratification or relatedness), as well as computational 
efficiency. Notably, statistical and computational considerations may 
not necessarily conflict: for example, Zhang et al.7 suggest that the use 
of compressed MLM, which yields a lower-rank relatedness matrix 
by clustering individuals, can both reduce computation and increase 
power compared with the full-rank matrix. The general question of 
which low-rank relatedness matrices produce the best combination of 
computational and statistical performance seems to be an interesting 
avenue for further study.

URLs. Freely available implementation of the GEMMA software,  
http://stephenslab.uchicago.edu/software.html; WTCCC, http://www.
wtccc.org.uk/.

Methods
Methods and any associated references are available in the online 
version of the paper.

Note: Supplementary information is available in the online version of the paper. 
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ONLINE METHODS
Linear mixed-model and target-optimization functions. We consider the 
following standard linear mixed model

y = Wa + x b + Zu + «

u ~ MVNm (0,λτ−1 K)

« ~ MVNn (0,τ−1In)

where n is the number of individuals, m is the number of groups, strains or 
clusters, y is an n × 1 vector of quantitative traits, W = (w1, w2… wc) is an n ×  
c matrix of covariates (fixed effects) including a column vector of 1, a is a c × 1  
vector of corresponding coefficients including the intercept, x is an n × 1 vector 
of marker genotypes, β is the effect size of the marker, Z is an n × m loading 
matrix, u is an m × 1 vector of random effects, « is an n × 1 vector of errors, 
τ−1 is the variance of the residual errors, λ is the ratio between the two variance 
components, K is a known m × m relatedness matrix, In is an n × n identity 
matrix and MVN denotes multivariate normal distribution.

In the case of the HMDP data set, m is the number of strains, n is the 
number of animals and matrix Z indicates which strain each animal arises 
from (zij = 1 if individual i comes from strain j and = 0 otherwise). In the 
case of the WTCCC data set, m = n and Z is an identity matrix. Multiple 
covariates, such as cluster memberships or eigenvectors5–7, can be incor-
porated into W.

We are interested in obtaining both the maximum-likelihood estimates 
(MLEs) and the restricted/residual maximum-likelihood (REML) estimates 
and further exact test statistics. We use the term ‘exact’ for brevity, although the 
more precise term is ‘effectively exact’. This is because computing the statistics 
involves an optimization problem that is not guaranteed to be convex, and, 
therefore, in general one cannot be guaranteed of finding the global optimum. 
However, existing optimization methods seem to be highly effective in prac-
tice. The following description and derivation of the GEMMA algorithm uses 
a few properties that have been described previously19.

The log-likelihood and log-restricted likelihood functions for the standard 
linear mixed model are 

l n n

T

l t b t p

t b
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where G = ZKZT, H = λG + In and PX = H−1 − H−1(W,x)((W,x)T H−1 
(W,x))−1 (W,x)T H−1.

If λ is known, we can easily obtain ̂, b̂ and t̂  for both log-likelihood and 
log-restricted likelihood functions (Supplementary Note). Therefore, finding 
MLEs and REML estimates is equivalent to optimizing the following target 
functions with respect to λ:
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Optimization method overview. A direct, naive evaluation of the likeli-
hood function or the restricted-likelihood function has a computational time 
that increases with the cube of the number of individuals because it involves 

(1)(1)

(2)(2)

(3)(3)

(4)(4)

calculating a matrix determinant and a matrix inversion. A similarly expensive  
computation involving a matrix inversion and a few matrix-vector multiplica-
tions is used for each update step in the standard Henderson’s iterative optimi-
zation procedure20. Therefore, Henderson’s optimization algorithm is relatively 
slow. The algorithm in EMMA3 solves this problem by eigen decompositions 
of matrix G and matrix Px before optimization. After that, each target function 
involves only a summation of n scalar functions, thus making the generation 
of the derivatives straightforward and their evaluation efficient. As a result, 
EMMA performs a single expensive calculation for each marker (decomposi-
tion of Px) followed by an iterative maximization scheme that involves only 
inexpensive operations (linear complexity in the number of individuals for 
each iteration).

We take a different approach and obtain the first and second derivatives in 
vector and matrix forms before eigen decomposition of the relatedness matrix 
G. Using three key recursions, we further show that both target functions and 
derivatives in vector/matrix forms for each marker, despite their complicated 
appearance, are easy and efficient to evaluate during each optimization step. 
Therefore, we effectively replace the expensive eigen decomposition of matrix 
Px for each SNP with an inexpensive matrix-vector multiplication followed 
by a few recursions involving only scalar multiplications. As in EMMA, each 
iteration of iterative maximization involves only inexpensive operations (lin-
ear complexity in the number of individuals n, quadratic complexity in the 
number of covariates c).

For numeric optimization, we start with Brent’s method on the first derivative 
for stability and follow with the Newton-Raphson method, using the second 
derivative for efficiency. Details are given in the Supplementary Note.

Note that eigen decomposition can be completed more quickly when m < n 
with a modification of the Gram-Schmidt process3; however, this trick is not 
expected to substantially improve analysis for a genome-wide analysis and has 
not been implemented in the current version of the software.

Derivatives of target functions. We obtain the first and second derivatives 
for the log-likelihood function with 
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and the first and second derivatives for the log-restricted likelihood function 
with the following equations:
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The above equations are obtained using a few matrix calculus properties, which 
are listed in detail in the Supplementary Note.

Several quantities require efficient evaluation. There are a few quantities that 
need to be efficiently evaluated for each genetic marker in each optimization 
step. For the log-likelihood and log-restricted likelihood functions (3) and 
(4), we need to evaluate H , W x H W x, ,( ) ( )−T 1  and yTPxy. For the deriva-
tives of the log-likelihood and log-restricted likelihood functions (5)–(8),  
we need to evaluate two types of quantities: trace terms (trace(H−1G), 
trace(H−1GH−1G), trace(PxG) and trace(PxGPxG)), and vector-matrix-vector 

(5)(5)

(6)(6)

(7)(7)

(8)(8)
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product terms (yTPxGPxy and yTPxGPxGPxy). We note that the trace terms can 
be derived from trace(H−1), trace(H−1H−1), trace(Px) and trace(PxPx), and the 
vector-matrix-vector product terms can be derived from yTPxy, yTPxPxy and 
yTPxPxPxy (Supplementary Note). Therefore, we need to efficiently evaluate 
three types of quantities for each SNP for any given λ

1.	 Determinant terms H  and W x H W x, ,( ) ( )−T 1

2.	 Trace terms trace(H−1), trace(H−1H−1), trace(Px) and trace(PxPx)
3.	 Vector-matrix-vector product terms yTPxy, yTPxPxy and yTPxPxPxy

We separate the above terms into basic quantities (which involve  
matrix H) and induced quantities (which involve matrix Px). The next two 
sections describe how these quantities were evaluated.

Calculation of the basic quantities. Here, we describe the efficient calcu-
lations of three basic quantities: the determinant term H , the trace terms 
trace(H−1) and trace(H−1H−1), and the vector-matrix-vector product terms 
in the forms of aTH−1b, aTH−1H−1b and aTH−1H−1H−1b, with a and b being 
equal to one of wi, x and y.

Before the genome-wide analysis, we first obtain an eigen decomposition 
G = UDUT with time complexity O(mn2), where D = diag(δ1, δ2…, δn) and 
δi values are the eigen values. As In = UUT, we have H = Udiag(λδ1 + 1, …, 
λδn + 1)UT. Therefore, during each optimization step, the determinant term 

can be calculated with time complexity O(n): H = +( )
=
∏ ldi
i

n
1

1
. Similarly, the 

trace terms can be evaluated with time O(n): trace H− −

=
( ) = +( )∑1 1

1
1ldi

i

n
 and 

trace H H− − −

=
( ) = +( )∑1 1 2

1
1ldi

i

n
.

Next, we define and calculate (vw1, vw2… vwc) = UTW,vy = UTy and vx = 
UTx, each with time complexity O(n2), and only vx needs to be calculated for 
each SNP. Then, for any a and b that are equal to one of wi, x and y during each 
optimization step with time complexity O(n), we obtain 
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where vai and vbi are the corresponding ith elements in the vectors UTa and 
UTb, respectively.

Recursions for the induced quantities. Here, we describe three recur-
sions to efficiently evaluate the induced quantities from the basic quantities.  
The induced quantities are the determinant term W x H W x, ,( ) ( )−T 1 , the 
trace terms trace(Px) and trace(PxPx), and the vector-matrix-vector product 
terms yTPxy, yTPxPxy and yTPxPxPxy.

First, we define P0 = H−1, Pc+1 = Px, wc+1 = x, Wi = (w1, w2… wi) and 

P H H W W H W W Hi i i
T

i i
T= − ( )− − − − −1 1 1 1 1  for i ∈ {1, 2… c+1}. With 

the Leibniz formula, we obtain a recursion for the determinant term 
W H W W H W w P wi

T
i i

T
i i

T
i i

−
−

−
− −= ( )1

1
1

1 1 .
Next, with blockwise matrix inversion, we obtain P P P w w P w w Pi i i i i

T
i i i

T
i= − ( )− − −

−
−1 1 1

1
1 

P P P w w P w w Pi i i i i
T

i i i
T

i= − ( )− − −
−

−1 1 1
1

1. This leads to a recursion for the trace terms trace(Pi) 
and trace(PiPi) and another recursion for the vector-matrix-vector product 
terms aTPib, aTPiPib and aTPiPiPib for any vectors a and b of the right size 
(Supplementary Note).

All the above recursions only involve scalar multiplications, and calcula-
tions do not depend on the number of individuals. Therefore, the overall 
time complexity for GEMMA is O(mn2) (eigen decomposition of G) + O(cn2) 
(evaluations of vwi and vy) + O(pn2) (evaluation of vx for each SNP) + O(ptc2n) 
(evaluations of the basic quantities for each SNP during each optimization 
iteration) = O(mn2 + cn2 + pn2 + ptc2n).

19.	Searle, S.R., Casella, G. & McCulloch, C.E. Variance Components. (Wiley, New York, 
2006).

20.	Henderson, C.R. Applications of Linear Models in Animal Breeding (University of 
Guelph, Guelph, Canada, 1984).
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